CAREER: Learning Optimization Algorithms from Data: Interpretability, Reliability, and Scalability
职业:从数据中学习优化算法:可解释性、可靠性和可扩展性
基本信息
- 批准号:2145346
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Efficient and scalable optimization algorithms (a.k.a., optimizers) are the cornerstone of almost all computational fields. In many practical applications of optimization, one will repeatedly perform a certain type of optimization tasks over a specific distribution of data. Learning to optimize (L2O) is an emerging paradigm that automatically develops an optimization method (optimizer) by learning from its performance on a set of past optimization tasks. Then on solving new but similar optimization tasks, the learned optimizer can demonstrate many promising benefits including faster convergence and/or better solution quality. As a fast-growing new field, many open challenges remain concerning both L2O's theoretical underpinnings and its practical applicability. In particular, the learned optimizers are often hard to interpret, trust, and scale.The project targets those research gaps and expands to mid-term and long-term research directions pertaining to the foundations of L2O. Specifically, the project proposes a multi-pronged research agenda including: a novel symbolic representation that makes L2O lightweight and more interpretable; a Bayesian L2O modeling framework that can quantify optimizer uncertainty; new customized designs of L2O model architectures and regularizers that can robustly encode problem-specific priors; and a generic amalgamation scheme to bridge L2O training to classical optimizers as teachers. Each thrust addresses a unique aspect of L2O (representation, calibration, model design, and training strategy). Meanwhile, those thrusts are compatible with each other and can be applied together. The proposed efforts synergize cutting-edge technical advances from deep learning, symbolic learning, Bayesian optimization, and meta learning. Successful outcomes are expected to turn L2O into principled science as well as a mature tool for real applications. This project has an integrated plan of result dissemination, education, and outreach. In particular, all new algorithms resulting from the project will be integrated into the Open-L2O software package, developed and maintained by the PI's group.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有效且可扩展的优化算法(又称优化器)是几乎所有计算场的基石。在许多实用的优化应用中,人们将在特定的数据分布上反复执行某种类型的优化任务。学习优化(L2O)是一种新兴范式,它通过在过去的一系列优化任务上从性能中学习,从而自动开发优化方法(优化器)。然后,在解决新的但类似的优化任务时,学习的优化器可以证明许多有希望的好处,包括更快的收敛和/或更好的解决方案质量。作为一个快速增长的新领域,关于L2O的理论基础及其实际适用性的许多开放挑战仍然存在。特别是,学到的优化者通常很难解释,信任和规模。该项目针对这些研究差距,并扩展到与L2O基础有关的中期和长期研究方向。具体而言,该项目提出了一个多管齐的研究议程,包括:一种新颖的符号表示,使L2O轻量级和更容易解释;可以量化优化器不确定性的贝叶斯L2O建模框架; L2O模型体系结构和正规化器的新定制设计,这些设计可以鲁棒编码特定问题的先验;以及一种通用的合并计划,将L2O培训桥接到经典优化者作为教师。每个推力都解决了L2O(表示,校准,模型设计和培训策略)的独特方面。同时,这些推力彼此兼容,可以一起应用。拟议的努力从深度学习,象征性学习,贝叶斯优化和元学习中提出了尖端的技术进步。预计成功的结果将把L2O变成原始的科学以及用于实际应用的成熟工具。该项目制定了结果传播,教育和外展的综合计划。特别是,该项目产生的所有新算法都将集成到PI小组开发和维护的Open-L2O软件包中。该奖项反映了NSF的法定任务,并认为值得通过基金会的智力优点和更广泛的影响评估标准通过评估来获得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M-L2O: Towards Generalizable Learning-to-Optimize by Test-Time Fast Self-Adaptation
- DOI:10.48550/arxiv.2303.00039
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Junjie Yang;Xuxi Chen;Tianlong Chen;Zhangyang Wang;Yitao Liang
- 通讯作者:Junjie Yang;Xuxi Chen;Tianlong Chen;Zhangyang Wang;Yitao Liang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhangyang Wang其他文献
Privacy-Preserving Deep Visual Recognition: An Adversarial Learning Framework and A New Dataset
保护隐私的深度视觉识别:对抗性学习框架和新数据集
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Haotao Wang;Zhenyu Wu;Zhangyang Wang;Zhaowen Wang;Hailin Jin - 通讯作者:
Hailin Jin
Expressive Gaussian Human Avatars from Monocular RGB Video
单眼 RGB 视频中富有表现力的高斯人体头像
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hezhen Hu;Zhiwen Fan;Tianhao Wu;Yihan Xi;Seoyoung Lee;Georgios Pavlakos;Zhangyang Wang - 通讯作者:
Zhangyang Wang
A Novel Framework for 3D-2D Vertebra Matching
3D-2D 椎骨匹配的新框架
- DOI:
10.1109/mipr.2019.00029 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Hanchao Yu;Yang Fu;Haichao Yu;Yunchao Wei;Xinchao Wang;Jianbo Jiao;Matthew Bramler;T. Kesavadas;Humphrey Shi;Zhangyang Wang;B. Wen;Thomas S. Huang - 通讯作者:
Thomas S. Huang
DynEHR: Dynamic adaptation of models with data heterogeneity in electronic health records
DynEHR:电子健康记录中数据异质性模型的动态适应
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Lida Zhang;Xiaohan Chen;Tianlong Chen;Zhangyang Wang;B. Mortazavi - 通讯作者:
B. Mortazavi
I Am Going MAD: Maximum Discrepancy Competition for Comparing Classifiers Adaptively
我要疯了:自适应比较分类器的最大差异竞赛
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Haotao Wang;Tianlong Chen;Zhangyang Wang;Kede Ma - 通讯作者:
Kede Ma
Zhangyang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhangyang Wang', 18)}}的其他基金
Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning
合作研究:III:媒介:计算隐私和机器学习的综合框架
- 批准号:
2212176 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133861 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Learning to Optimize: From New Algorithms to New Theory
合作研究:CCSS:学习优化:从新算法到新理论
- 批准号:
2113904 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
- 批准号:
2053272 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CRII: RI: Learning with Low-Quality Visual Data: Handling Both Passive and Active Degradations
CRII:RI:使用低质量视觉数据学习:处理被动和主动退化
- 批准号:
2053269 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2053279 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
- 批准号:
1934755 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
1937588 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CRII: RI: Learning with Low-Quality Visual Data: Handling Both Passive and Active Degradations
CRII:RI:使用低质量视觉数据学习:处理被动和主动退化
- 批准号:
1755701 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于群智能优化和深度学习的泛癌驱动通路识别研究
- 批准号:62366007
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于多目标优化的下肢外骨骼拟人步态建模与学习算法研究
- 批准号:62303092
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向联邦学习的调度与通信优化关键技术研究
- 批准号:62372305
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多无人机协同环航目标跟踪的安全学习优化控制研究
- 批准号:62303480
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于组合策略优化的自适应光学自学习控制模型研究
- 批准号:62305280
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Machine Learning for Discrete Optimization
职业:用于离散优化的机器学习
- 批准号:
2338226 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Holistic Distributed Resource Management and Discovery via Augmented Learning and Robust Optimization
职业:通过增强学习和鲁棒优化进行整体分布式资源管理和发现
- 批准号:
2339243 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant