CRII: RI: Learning with Low-Quality Visual Data: Handling Both Passive and Active Degradations
CRII:RI:使用低质量视觉数据学习:处理被动和主动退化
基本信息
- 批准号:2053269
- 负责人:
- 金额:$ 7.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is focused on effectively and robustly exploiting low-quality (LQ) visual data for computer vision tasks. While most current computer vision systems are designed for high-quality visual data, collected from "clear" environments where subjects are well observable without significant attenuation or alteration, a dependable vision system must reckon with the entire spectrum of degradations from unconstrained environments. With various degradations arising from the visual data acquisition and processing pipeline, the ubiquitous LQ visual data can dramatically deteriorate the model performance in practice. The project outcome can broadly benefit a variety of real-world applications, such as video surveillance, autonomous/assisted driving, robotics and medical image analysis, where LQ visual data has constituted major performance and reliability bottlenecks. This research categorizes common degradations into the two types: "passive degradations" that are caused by uncontrollable environment factors (such as bad weather and low light); and "active degradations" that are intentionally introduced in a controllable way to meet certain budget requirements (such as lossy compression). The project will mainly addresses two important technical questions: i) how to overcome passive degradations and achieve more robust high-level task performance on LQ video data, using end-to-end deep learning models; and ii) how to properly introduce and control active degradations to generate the desired form of LQ data, that both satisfies certain budget requirements and maintains the target task utility, using deep adversarial learning models. The resulting new techniques are to be verified on application examples such as video recognition, video annotation, video compression, and de-identified video data sharing for recognition purpose.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是有效,健壮地利用低质量(LQ)视觉数据来进行计算机视觉任务。尽管当前的大多数计算机视觉系统都是为高质量的视觉数据而设计的,这些数据是从“清晰”环境中收集的,在没有大幅度衰减或更改的情况下,受试者可以观察到,但可靠的视觉系统必须估计来自无约束环境的整个降解范围。随着视觉数据采集和处理管道引起的各种降解,无处不在的LQ视觉数据可以在实践中极大地恶化模型性能。该项目结果可以广泛受益于各种现实世界应用,例如视频监视,自动驾驶/辅助驾驶,机器人技术和医学图像分析,其中LQ视觉数据构成了主要的性能和可靠性瓶颈。这项研究将常见的降解归类为两种类型:“被动降解”,这些降解是由无法控制的环境因素(例如恶劣的天气和低光)引起的;以及以可控的方式有意引入以满足某些预算要求(例如有损压缩)的“主动降解”。该项目将主要解决两个重要的技术问题:i)如何使用端到端的深度学习模型克服被动降解并在LQ视频数据上实现更强大的高级任务性能; ii)如何使用深厚的对抗性学习模型正确介绍和控制主动降解以生成所需的LQ数据形式,这些LQ数据都满足某些预算要求并保持目标任务实用程序。由此产生的新技术将在申请示例中进行验证,例如视频识别,视频注释,视频压缩和识别视频数据共享,以识别目的。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来获得支持的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Privacy-Preserving Deep Action Recognition: An Adversarial Learning Framework and A New Dataset
- DOI:10.1109/tpami.2020.3026709
- 发表时间:2020-09
- 期刊:
- 影响因子:23.6
- 作者:Zhenyu Wu;Haotao Wang;Zhaowen Wang;Hailin Jin;Zhangyang Wang
- 通讯作者:Zhenyu Wu;Haotao Wang;Zhaowen Wang;Hailin Jin;Zhangyang Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhangyang Wang其他文献
Privacy-Preserving Deep Visual Recognition: An Adversarial Learning Framework and A New Dataset
保护隐私的深度视觉识别:对抗性学习框架和新数据集
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Haotao Wang;Zhenyu Wu;Zhangyang Wang;Zhaowen Wang;Hailin Jin - 通讯作者:
Hailin Jin
Expressive Gaussian Human Avatars from Monocular RGB Video
单眼 RGB 视频中富有表现力的高斯人体头像
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hezhen Hu;Zhiwen Fan;Tianhao Wu;Yihan Xi;Seoyoung Lee;Georgios Pavlakos;Zhangyang Wang - 通讯作者:
Zhangyang Wang
A Novel Framework for 3D-2D Vertebra Matching
3D-2D 椎骨匹配的新框架
- DOI:
10.1109/mipr.2019.00029 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Hanchao Yu;Yang Fu;Haichao Yu;Yunchao Wei;Xinchao Wang;Jianbo Jiao;Matthew Bramler;T. Kesavadas;Humphrey Shi;Zhangyang Wang;B. Wen;Thomas S. Huang - 通讯作者:
Thomas S. Huang
DynEHR: Dynamic adaptation of models with data heterogeneity in electronic health records
DynEHR:电子健康记录中数据异质性模型的动态适应
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Lida Zhang;Xiaohan Chen;Tianlong Chen;Zhangyang Wang;B. Mortazavi - 通讯作者:
B. Mortazavi
I Am Going MAD: Maximum Discrepancy Competition for Comparing Classifiers Adaptively
我要疯了:自适应比较分类器的最大差异竞赛
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Haotao Wang;Tianlong Chen;Zhangyang Wang;Kede Ma - 通讯作者:
Kede Ma
Zhangyang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhangyang Wang', 18)}}的其他基金
Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning
合作研究:III:媒介:计算隐私和机器学习的综合框架
- 批准号:
2212176 - 财政年份:2022
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
CAREER: Learning Optimization Algorithms from Data: Interpretability, Reliability, and Scalability
职业:从数据中学习优化算法:可解释性、可靠性和可扩展性
- 批准号:
2145346 - 财政年份:2022
- 资助金额:
$ 7.73万 - 项目类别:
Continuing Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133861 - 财政年份:2022
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Learning to Optimize: From New Algorithms to New Theory
合作研究:CCSS:学习优化:从新算法到新理论
- 批准号:
2113904 - 财政年份:2021
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
- 批准号:
2053272 - 财政年份:2020
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2053279 - 财政年份:2020
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
- 批准号:
1934755 - 财政年份:2019
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
1937588 - 财政年份:2019
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
CRII: RI: Learning with Low-Quality Visual Data: Handling Both Passive and Active Degradations
CRII:RI:使用低质量视觉数据学习:处理被动和主动退化
- 批准号:
1755701 - 财政年份:2018
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
相似国自然基金
跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
- 批准号:82301120
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“免疫-神经”网络探讨眼针活化CI/RI大鼠MC靶向H3R调节“免疫监视”的抗炎机制
- 批准号:82374375
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
- 批准号:82300022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
- 批准号:32200568
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: RI: Building A Self-Learning Robot System with Neuromorphic Computing
CRII:RI:构建具有神经形态计算的自学习机器人系统
- 批准号:
2245712 - 财政年份:2023
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
CRII: RI: Immune-Inspired Learning Foundations of Neural Network General Robustness
CRII:RI:神经网络一般鲁棒性的免疫启发学习基础
- 批准号:
2246157 - 财政年份:2023
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
CRII: RI: Secure Multi-Agent Reinforcement Learning Algorithms
CRII:RI:安全多代理强化学习算法
- 批准号:
2105007 - 财政年份:2021
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
CRII: RI: Learning novel multi-resolution representations of graphs: Applications to Brain Connectivity analysis for Alzheimer's Disease
CRII:RI:学习图形的新颖多分辨率表示:在阿尔茨海默氏病大脑连接分析中的应用
- 批准号:
1948510 - 财政年份:2020
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant
CRII: RI: Learning a Timely Semantic Resource from Social Media Data
CRII:RI:从社交媒体数据中学习及时的语义资源
- 批准号:
2038457 - 财政年份:2020
- 资助金额:
$ 7.73万 - 项目类别:
Standard Grant