Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance

协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能

基本信息

  • 批准号:
    2319780
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Federated learning (FL) is a distributed framework proposed for training machine learning (ML) models on mobile devices in Next Generation (NextG) wireless communication systems. Hierarchical federated learning (HFL) is an architecture that shows promise in enabling FL over wireless networks. However, existing research on HFL falls short in effectively addressing the challenges posed by the NextG communication environment, such as high user and edge server density, diverse edge server deployments, and overlapping wireless coverage. To tackle these challenges, this project aims to investigate resource allocation problems in HFL, focusing on selecting mobile clients to participate in HFL, associating them with edge servers, and allocating sufficient bandwidth under these demanding conditions. The successful completion of the proposed framework has the potential in transforming the deployment and operation of NextG systems and will provide support for a wide range of ML-powered applications and services. The primary objective in designing the performance of HFL over wireless networks is to optimize the overall training time required for convergence. This can be achieved by minimizing the time duration of each HFL round through efficient allocation of wireless bandwidth to each client (the bandwidth allocation problem). However, due to high client density, limited wireless spectrum, and mobility, not all clients may be able to participate in every round. This leads to the need to determine which clients should participate in each round (the client selection problem) and which clients should be associated with which edge server given the overlapping wireless coverage and presence of multiple providers (the client association problem). To address these challenges, the project focuses on three key research areas: (i) designing short-term bandwidth allocation for HFL under highly dense and heterogeneous deployments, (ii) developing a long-term optimization framework to solve user selection and association for HFL, and (iii) improving HFL under the emerging scenario in which a mobile client can be associated with multiple edge servers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
联邦学习 (FL) 是一种分布式框架,旨在用于在下一代 (NextG) 无线通信系统中的移动设备上训练机器学习 (ML) 模型。分层联合学习 (HFL) 是一种有望在无线网络上实现 FL 的架构。然而,现有的 HFL 研究未能有效解决 NextG 通信环境带来的挑战,例如用户和边缘服务器密度高、边缘服务器部署多样化以及无线覆盖重叠等。为了应对这些挑战,该项目旨在研究HFL中的资源分配问题,重点是选择移动客户端参与HFL,将它们与边缘服务器关联,并在这些苛刻条件下分配足够的带宽。拟议框架的成功完成有可能改变 NextG 系统的部署和操作,并将为广泛的 ML 支持的应用程序和服务提供支持。设计无线网络上 HFL 性能的主要目标是优化收敛所需的总体训练时间。这可以通过向每个客户端有效分配无线带宽(带宽分配问题)来最小化每个 HFL 轮的持续时间来实现。然而,由于客户端密度高、无线频谱有限和移动性,并非所有客户端都能够参与每一轮。这导致需要确定哪些客户端应该参与每一轮(客户端选择问题),以及哪些客户端应该与哪个边缘服务器关联(考虑到重叠的无线覆盖范围和多个提供商的存在)(客户端关联问题)。为了应对这些挑战,该项目重点关注三个关键研究领域:(i) 设计高密度和异构部署下 HFL 的短期带宽分配,(ii) 开发长期优化框架来解决 HFL 的用户选择和关联问题,以及 (iii) 在移动客户端可以与多个边缘服务器关联的新兴场景下改进 HFL。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Xu其他文献

Preparation of the Cluster States in a Linear Trap Systems
A basic phenylalanine‐rich oligo‐peptide causes antibody cross‐reactivity
富含苯丙氨酸的碱性寡肽引起抗体交叉反应
  • DOI:
    10.1002/elps.201000446
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    G. Luo;Guang;Jinya Guo;Haijiang Zhang;Sun Li;Weidong Wu;Ling Nie;Yuliang Dong;Suhong Wu;Guangni Zheng;Jing Yang;Jie Xu;Weina Wang
  • 通讯作者:
    Weina Wang
Rehabilitation After Sacrectomy and Pelvic Resection
骶骨切除和骨盆切除术后的康复
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Xu;Wei Guo
  • 通讯作者:
    Wei Guo
A 4–15-GHz ring oscillator based injection-locked frequency multiplier with built-in harmonic generation
具有内置谐波生成功能的基于注入锁定倍频器的 4–15GHz 环形振荡器
Quantification of Racial Disparity on Urinary Tract Infection Recurrence and Treatment Resistance in Florida using Algorithmic Fairness Methods
使用算法公平方法量化佛罗里达州尿路感染复发和治疗耐药性的种族差异

Jie Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie Xu', 18)}}的其他基金

Elucidating Mechanisms of Metal Sulfide-Enabled Growth of Anoxygenic Photosynthetic Bacteria Using Transcriptomic, Aqueous/Surface Chemical, and Electron Microscopic Tools
使用转录组、水/表面化学和电子显微镜工具阐明金属硫化物促进不产氧光合细菌生长的机制
  • 批准号:
    2311021
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SAI-R: Strengthening American Electricity Infrastructure for an Electric Vehicle Future: An Energy Justice Approach
SAI-R:加强美国电力基础设施以实现电动汽车的未来:能源正义方法
  • 批准号:
    2228603
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CAREER: Wireless InferNets: Enabling Collaborative Machine Learning Inference on the Network Path
职业:无线推理网:在网络路径上实现协作机器学习推理
  • 批准号:
    2044991
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SWIFT: SMALL: Understanding and Combating Adversarial Spectrum Learning towards Spectrum-Efficient Wireless Networking
合作研究:SWIFT:SMALL:理解和对抗对抗性频谱学习以实现频谱高效的无线网络
  • 批准号:
    2029858
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Towards a Resource Rationing Framework for Wireless Federated Learning
CCSS:协作研究:无线联邦学习的资源配给框架
  • 批准号:
    2033681
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Towards Automated and QoE-driven Machine Learning Model Selection for Edge Inference
合作研究:CNS 核心:小型:面向边缘推理的自动化和 QoE 驱动的机器学习模型选择
  • 批准号:
    2006630
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Power Grids Weather Resilience through Model-free Dimension Reduction and Stochastic Search for Optimal Hardening
合作研究:通过无模型降维和随机搜索优化强化来提高电网的耐候能力
  • 批准号:
    1923145
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards High-Throughput Label-Free Circulating Tumor Cell Separation using 3D Deterministic Dielectrophoresis (D-Cubed)
合作研究:利用 3D 确定性介电泳 (D-Cubed) 实现高通量无标记循环肿瘤细胞分离
  • 批准号:
    1917295
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF/ENG/ECCS-BSF: Complex liquid droplet structures as new optical and optomechanical materials
合作研究:NSF/ENG/ECCS-BSF:复杂液滴结构作为新型光学和光机械材料
  • 批准号:
    1711798
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
EAGER-Dynamic Data: A New Scalable Paradigm for Optimal Resource Allocation in Dynamic Data Systems via Multi-Scale and Multi-Fidelity Simulation and Optimization
EAGER-动态数据:通过多尺度和多保真度仿真和优化实现动态数据系统中最佳资源分配的新可扩展范式
  • 批准号:
    1462409
  • 财政年份:
    2015
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332172
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332173
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
  • 批准号:
    2401415
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
  • 批准号:
    2245607
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319781
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了