CAREER: Wireless InferNets: Enabling Collaborative Machine Learning Inference on the Network Path
职业:无线推理网:在网络路径上实现协作机器学习推理
基本信息
- 批准号:2044991
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning is increasingly being integrated into wireless network applications, such as video surveillance, smart healthcare and industrial internet of things, to derive actionable intelligence from the rich data collected or generated by wireless devices. To support real-time machine learning and decision making in these applications, a large amount of data has to be transferred from the data source to the destination and processed by an inference algorithm in a timely manner. Traditionally, data transfer and machine learning inference are treated as two separate optimization tasks, but such approaches are inefficient as they ignored the interaction between data transfer and machine learning inference, resulting in either a large data transfer delay or a large inference delay. This CAREER project overcomes the limitations of existing approaches by proposing wireless InferNets, a new wireless network architecture that enables collaborative machine learning inference among network nodes on the data transfer path. The successful completion of this CAREER project will promote the understanding of the synergy between distributed inference and networking, and catalyze a paradigm shift of future wireless networks to support emerging applications and services in security, healthcare and other technological domains. The project also contains a significant educational component and provides abundant opportunities to nurture and attract students, especially from underrepresented groups, to engage in computer science and engineering. This CAREER project develops models, algorithms and protocols to realize the core functions of wireless InferNets and address challenges caused by network and device heterogeneity, dynamic and imperfect network states, and multiple user contention for the limited resources via three main research aims. Specifically, it aims at (i) developing practical distributed inference routing algorithms and protocols and conducting theoretical analysis to understand the performance limits; (ii) developing new multi-armed bandit algorithms to perform inference routing with uncertain network information; (iii) developing distributed multi-agent deep reinforcement learning algorithms for inference routing in multi-user wireless InferNets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习越来越多地集成到无线网络应用程序中,例如视频监视,智能医疗保健和工业互联网,以从无线设备收集或生成的丰富数据中得出可行的智能。为了支持这些应用程序中的实时机器学习和决策,必须将大量数据从数据源传输到目的地,并通过推理算法及时处理。传统上,数据传输和机器学习推论被视为两个独立的优化任务,但是这种方法忽略了数据传输和机器学习推断之间的相互作用,从而导致大数据传输延迟或大推断延迟。该职业项目通过提出无线地狱的局限性,这是一个新的无线网络体系结构,可以使网络节点之间的协作机器学习推断在数据传输路径上。该职业项目的成功完成将促进对分布式推理和网络之间的协同作用的理解,并催化未来无线网络的范式转移,以支持安全,医疗保健和其他技术领域中新兴应用和服务。该项目还包含重要的教育组成部分,并为培育和吸引学生尤其是代表性不足的团体的学生提供了丰富的机会,从而从事计算机科学和工程学。该职业项目开发了模型,算法和协议,以实现无线地狱的核心功能,并解决由网络和设备异质性,动态和不完美的网络状态以及通过三个主要研究目标对有限资源的多个用户争论引起的挑战。具体而言,它旨在(i)开发实用的分布式推理路由算法和协议,并进行理论分析以了解性能限制; (ii)开发新的多臂强盗算法以使用不确定的网络信息执行推理路由; (iii)开发用于多用户无线地狱中推理路由的分布式多代理深入学习算法。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响来通过评估来获得支持的。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning the Optimal Partition for Collaborative DNN Training with Privacy Requirements
学习具有隐私要求的协作 DNN 训练的最佳划分
- DOI:10.1109/jiot.2021.3127715
- 发表时间:2021
- 期刊:
- 影响因子:10.6
- 作者:Zhang, Letian;Xu, Jie
- 通讯作者:Xu, Jie
E3Pose: Energy-Efficient Edge-assisted Multi-camera System for Multi-human 3D Pose Estimation
- DOI:10.1145/3576842.3582370
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Letian Zhang;Jie Xu
- 通讯作者:Letian Zhang;Jie Xu
Adversarial Group Linear Bandits and Its Application to Collaborative Edge Inference
- DOI:10.1109/infocom53939.2023.10228900
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Yin-Hae Huang;Letian Zhang;J. Xu
- 通讯作者:Yin-Hae Huang;Letian Zhang;J. Xu
Autodidactic Neurosurgeon: Collaborative Deep Inference for Mobile Edge Intelligence via Online Learning
- DOI:10.1145/3442381.3450051
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Letian Zhang;Lixing Chen;Jie Xu
- 通讯作者:Letian Zhang;Lixing Chen;Jie Xu
Bandwidth Allocation for Multiple Federated Learning Services in Wireless Edge Networks
- DOI:10.1109/twc.2021.3113346
- 发表时间:2021-01
- 期刊:
- 影响因子:10.4
- 作者:Jie Xu;Heqiang Wang;Lixing Chen
- 通讯作者:Jie Xu;Heqiang Wang;Lixing Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Xu其他文献
Preparation of the Cluster States in a Linear Trap Systems
- DOI:
10.1007/s10773-018-3849-5 - 发表时间:
2018-08 - 期刊:
- 影响因子:1.4
- 作者:
Jie Xu - 通讯作者:
Jie Xu
A basic phenylalanine‐rich oligo‐peptide causes antibody cross‐reactivity
富含苯丙氨酸的碱性寡肽引起抗体交叉反应
- DOI:
10.1002/elps.201000446 - 发表时间:
2011 - 期刊:
- 影响因子:2.9
- 作者:
G. Luo;Guang;Jinya Guo;Haijiang Zhang;Sun Li;Weidong Wu;Ling Nie;Yuliang Dong;Suhong Wu;Guangni Zheng;Jing Yang;Jie Xu;Weina Wang - 通讯作者:
Weina Wang
Rehabilitation After Sacrectomy and Pelvic Resection
骶骨切除和骨盆切除术后的康复
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jie Xu;Wei Guo - 通讯作者:
Wei Guo
A 4–15-GHz ring oscillator based injection-locked frequency multiplier with built-in harmonic generation
具有内置谐波生成功能的基于注入锁定倍频器的 4–15GHz 环形振荡器
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jie Xu;Jianyun Hu;B. Ciftcioglu;Hui Wu - 通讯作者:
Hui Wu
Quantification of Racial Disparity on Urinary Tract Infection Recurrence and Treatment Resistance in Florida using Algorithmic Fairness Methods
使用算法公平方法量化佛罗里达州尿路感染复发和治疗耐药性的种族差异
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Inyoung Jun;Sarah E. S. Leary;Jie Xu;Jiang Bian;M. Prosperi - 通讯作者:
M. Prosperi
Jie Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Xu', 18)}}的其他基金
Elucidating Mechanisms of Metal Sulfide-Enabled Growth of Anoxygenic Photosynthetic Bacteria Using Transcriptomic, Aqueous/Surface Chemical, and Electron Microscopic Tools
使用转录组、水/表面化学和电子显微镜工具阐明金属硫化物促进不产氧光合细菌生长的机制
- 批准号:
2311021 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
- 批准号:
2319780 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SAI-R: Strengthening American Electricity Infrastructure for an Electric Vehicle Future: An Energy Justice Approach
SAI-R:加强美国电力基础设施以实现电动汽车的未来:能源正义方法
- 批准号:
2228603 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Towards a Resource Rationing Framework for Wireless Federated Learning
CCSS:协作研究:无线联邦学习的资源配给框架
- 批准号:
2033681 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Understanding and Combating Adversarial Spectrum Learning towards Spectrum-Efficient Wireless Networking
合作研究:SWIFT:SMALL:理解和对抗对抗性频谱学习以实现频谱高效的无线网络
- 批准号:
2029858 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Towards Automated and QoE-driven Machine Learning Model Selection for Edge Inference
合作研究:CNS 核心:小型:面向边缘推理的自动化和 QoE 驱动的机器学习模型选择
- 批准号:
2006630 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Improving Power Grids Weather Resilience through Model-free Dimension Reduction and Stochastic Search for Optimal Hardening
合作研究:通过无模型降维和随机搜索优化强化来提高电网的耐候能力
- 批准号:
1923145 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Towards High-Throughput Label-Free Circulating Tumor Cell Separation using 3D Deterministic Dielectrophoresis (D-Cubed)
合作研究:利用 3D 确定性介电泳 (D-Cubed) 实现高通量无标记循环肿瘤细胞分离
- 批准号:
1917295 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NSF/ENG/ECCS-BSF: Complex liquid droplet structures as new optical and optomechanical materials
合作研究:NSF/ENG/ECCS-BSF:复杂液滴结构作为新型光学和光机械材料
- 批准号:
1711798 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER-Dynamic Data: A New Scalable Paradigm for Optimal Resource Allocation in Dynamic Data Systems via Multi-Scale and Multi-Fidelity Simulation and Optimization
EAGER-动态数据:通过多尺度和多保真度仿真和优化实现动态数据系统中最佳资源分配的新可扩展范式
- 批准号:
1462409 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于存算一体器件阵列的超高能效无线数据传输
- 批准号:62305155
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于非线性幅域滤波技术的低功耗无线接收机芯片研究
- 批准号:62374066
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
无线信号驱动的细粒度可控图像生成技术
- 批准号:62302471
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于复数域神经网络的无线感知关键技术
- 批准号:62372265
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
- 批准号:
2417064 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
- 批准号:
2345803 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
- 批准号:
2322601 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Optical and wireless sensors networks for 6G scenarios - -OWIN6G
6G场景的光学和无线传感器网络 - -OWIN6G
- 批准号:
EP/Y034538/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Integrated Sensing and Communication for 6G Wireless Networks
6G 无线网络的集成传感和通信
- 批准号:
DP240101019 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects