CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
基本信息
- 批准号:2110259
- 负责人:
- 金额:$ 52.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In recent years, machine learning (ML) and artificial intelligence (AI) applications are quickly finding their ways into our everyday life. All of these applications generate and inject a massive volume of data into the network for a wide range of complex ML/AI data analytics tasks, including but not limited to the training and/or inferences in computer vision, natural language processing, recommendation systems, etc. However, most of the existing wireless network control and optimization algorithms rarely take the new characteristics of ML/AI data analytic traffic into considerations. Likewise, most ML/AI data analytics algorithms oversimplify the underlying wireless networks as "bit pipes" and ignore their complex networking and physical layer constraints, hence leading to poor overall data analytics efficiency. The overarching theme of this CAREER research program is to bridge the gap between the rapidly growing ML/AI data analytics demands and the existing networking and communication technologies. The principal investigator (PI) explore a cross-disciplinary understanding between wireless networking and data analytics through a unified research program, which consists of the development of tractable theoretical models, exploration of theoretical performance bounds and limits, and the development of low-complexity distributed algorithms and protocols that are easy to implement in practice.In this CAREER program, the PI will develop networking-computing co-designs to facilitate ML/AI data analytics with data and model parallelisms in wireless edge networks. The PI will focus on three complementary research thrusts, each of which addresses one key aspect in supporting distributed data analytics at a different protocol layer: (i) communication-efficient distributed optimization at the physical layer; (ii) joint-queueing-computing scheduling at the medium access control layer; and (iii) admission control and resource virtualization at the transport layer. Collectively, the results in this research contribute to a new direction of wireless network control and optimization theory and systems design. The proposed research will serve as a foundation of the next-generation wireless networking that supports a plethora of data analytics and ML/AI applications. Due to its unique scientific and engineering challenges, this research program encompasses strong and holistic expertise in mathematical modeling, optimization, control, queueing theory, stochastic analysis, as well as deep knowledge of ML/AI system operations in practice. The proposed research will support not only the networking, communications, control, and machine learning research communities, but also the general public, by developing new optimization technologies for substantially improved network and data analytics performances.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,机器学习 (ML) 和人工智能 (AI) 应用正在迅速融入我们的日常生活。所有这些应用程序都会生成大量数据并将其注入网络,以执行各种复杂的 ML/AI 数据分析任务,包括但不限于计算机视觉、自然语言处理、推荐系统中的训练和/或推理,然而,大多数现有的无线网络控制和优化算法很少考虑ML/AI数据分析流量的新特征。同样,大多数机器学习/人工智能数据分析算法将底层无线网络过度简化为“比特管道”,而忽略了其复杂的网络和物理层限制,从而导致整体数据分析效率低下。该职业研究计划的首要主题是弥合快速增长的 ML/AI 数据分析需求与现有网络和通信技术之间的差距。首席研究员(PI)通过统一的研究计划探索无线网络和数据分析之间的跨学科理解,该计划包括开发易于处理的理论模型、探索理论性能边界和限制以及开发低复杂性分布式易于在实践中实施的算法和协议。在这个职业计划中,PI 将开发网络计算协同设计,以促进 ML/AI 数据分析,并在无线边缘网络中实现数据和模型并行性。该 PI 将重点关注三个互补的研究方向,每个方向都涉及支持不同协议层的分布式数据分析的一个关键方面:(i) 物理层的通信高效分布式优化; (ii)媒体访问控制层的联合排队计算调度; (iii) 传输层的准入控制和资源虚拟化。总的来说,这项研究的结果为无线网络控制和优化理论以及系统设计的新方向做出了贡献。拟议的研究将作为下一代无线网络的基础,支持大量数据分析和机器学习/人工智能应用。由于其独特的科学和工程挑战,该研究项目涵盖了数学建模、优化、控制、排队论、随机分析方面强大而全面的专业知识,以及 ML/AI 系统实践操作的深入知识。拟议的研究不仅将通过开发新的优化技术来显着提高网络和数据分析性能,从而支持网络、通信、控制和机器学习研究社区,而且还将支持公众。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low Sample and Communication Complexities in Decentralized Learning: A Triple Hybrid Approach
- DOI:10.1109/infocom42981.2021.9488686
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Xin Zhang;Jia Liu;Zhengyuan Zhu-;E. Bentley
- 通讯作者:Xin Zhang;Jia Liu;Zhengyuan Zhu-;E. Bentley
Taming Fat-Tailed (“Heavier-Tailed” with Potentially Infinite Variance) Noise in Federated Learning," in Proc. NeurIPS, New Orleans, LA, Dec. 2022
Taming Fat-Tailed (“Heavier-Tailed” with Potentially Infinite Variance) Noise in Federated Learning,载于 Proc. NeurIPS,路易斯安那州新奥尔良,2022 年 12 月
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yang, H.;Qiu, P.;Liu, J.
- 通讯作者:Liu, J.
Federated Learning with Fair Worker Selection: A Multi-Round Submodular Maximization Approach
- DOI:10.1109/mass52906.2021.00033
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Fengjiao Li;Jia Liu;Bo Ji
- 通讯作者:Fengjiao Li;Jia Liu;Bo Ji
GT-STORM: Taming Sample, Communication, and Memory Complexities in Decentralized Non-Convex Learning
- DOI:10.1145/3466772.3467056
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Xin Zhang;Jia Liu;Zhengyuan Zhu-;E. Bentley
- 通讯作者:Xin Zhang;Jia Liu;Zhengyuan Zhu-;E. Bentley
Adaptive Multi-Hierarchical signSGD for Communication-Efficient Distributed Optimization
用于通信高效分布式优化的自适应多层次符号SGD
- DOI:10.1109/spawc48557.2020.9154256
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Yang, Haibo;Zhang, Xin;Fang, Minghong;Liu, Jia
- 通讯作者:Liu, Jia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Liu其他文献
KNOWLEDGE FLOWS IN CHINA : A PATENT CITATIONS ANALYSIS Presented
中国的知识流动:专利引证分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jia Liu - 通讯作者:
Jia Liu
Aberrant peripheral immune responses in acute Kawasaki disease with single-cell sequencing
通过单细胞测序发现急性川崎病的异常外周免疫反应
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Zhen Wang;Lijian Xie;Sirui Song;Liqin Chen;Guang Li;Jia Liu;T. Xiao;H. Zhang;Yujuan Huang;Guohui Ding;Yixue Li;Min Huang - 通讯作者:
Min Huang
電力貯蔵装置を有する半導体変圧器の仮想同期機制御
带蓄电装置的半导体变压器虚拟同步机控制
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Mustafa Al-Tameemi;Jia Liu;Hassan Bevrani;and Toshifumi Ise;小谷駿介・劉佳・三浦友史・阪部茂一・伊瀬敏史;小谷駿介・三浦友史・伊瀬敏史;樋口順也・三浦友史;樋口順也・三浦友史;樋口順也・三浦友史 - 通讯作者:
樋口順也・三浦友史
Two-dimensional plasma grating by non-collinear femtosecond filament interaction in air
空气中非共线飞秒灯丝相互作用的二维等离子体光栅
- DOI:
10.1063/1.3650709 - 发表时间:
2011-10 - 期刊:
- 影响因子:4
- 作者:
Jia Liu;Wenxue Li;Haifeng Pan;Heping Zeng - 通讯作者:
Heping Zeng
QAM Modulation Based on Lowest Energy Consumption in Passive CRFID
- DOI:
10.3103/s0146411623060044 - 发表时间:
2023-11 - 期刊:
- 影响因子:0.9
- 作者:
Jia Liu - 通讯作者:
Jia Liu
Jia Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia Liu', 18)}}的其他基金
RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region
RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划
- 批准号:
2338987 - 财政年份:2023
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
- 批准号:
2239307 - 财政年份:2023
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
- 批准号:
2305729 - 财政年份:2023
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
Preparing to Care for a Culturally and Linguistically Diverse UK Patient Population: How Healthcare Students Develop Their Cultural Competence
准备照顾文化和语言多样化的英国患者群体:医疗保健学生如何发展他们的文化能力
- 批准号:
ES/W004860/1 - 财政年份:2021
- 资助金额:
$ 52.41万 - 项目类别:
Fellowship
FMSG: Cyber: Federated Deep Learning for Future Ubiquitous Distributed Additive Manufacturing
FMSG:网络:面向未来无处不在的分布式增材制造的联合深度学习
- 批准号:
2134689 - 财政年份:2021
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
SpecEES: Toward Spectral and Energy Efficient Cross-Layer Designs for Millimeter-Wave-Based Massive MIMO Networks
SpecEES:面向基于毫米波的大规模 MIMO 网络的频谱和节能跨层设计
- 批准号:
2140277 - 财政年份:2021
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
CPS: Medium: An AI-enabled Cyber-Physical-Biological System for Cardiac Organoid Maturation
CPS:中:用于心脏类器官成熟的人工智能网络物理生物系统
- 批准号:
2038603 - 财政年份:2020
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
NeTS: Small: Toward Optimal, Efficient, and Holistic Networking Design for Massive-MIMO Wireless Networks
NeTS:小型:面向大规模 MIMO 无线网络的优化、高效和整体网络设计
- 批准号:
2102233 - 财政年份:2020
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
- 批准号:
1943226 - 财政年份:2020
- 资助金额:
$ 52.41万 - 项目类别:
Continuing Grant
CIF: Small: Taming Convergence and Delay in Stochastic Network Optimization with Hessian Information
CIF:小:利用 Hessian 信息驯服随机网络优化中的收敛和延迟
- 批准号:
2110252 - 财政年份:2020
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
相似国自然基金
边缘智能下基于张量计算的时空场景图高效推理方法研究
- 批准号:62302131
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代理模型融合与迁移的分布式数据驱动进化计算方法
- 批准号:62376097
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
云边端融合下隐私增强的高可用智能计算协同技术
- 批准号:62302207
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向类脑计算的共生记忆元件仿生机制研究
- 批准号:62301395
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度势能的水工混凝土“胶凝基因”跨尺度精准计算
- 批准号:52379120
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
CAREER: GPU Performance Portability for Volunteer Computing through Heterogeneity-aware Autotuning
职业:通过异构感知自动调整实现志愿计算的 GPU 性能可移植性
- 批准号:
2144384 - 财政年份:2022
- 资助金额:
$ 52.41万 - 项目类别:
Continuing Grant
Biology-aware machine learning methods for characterizing microbiome genotype and phenotype
用于表征微生物组基因型和表型的生物学感知机器学习方法
- 批准号:
10810437 - 财政年份:2021
- 资助金额:
$ 52.41万 - 项目类别:
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
- 批准号:
1943226 - 财政年份:2020
- 资助金额:
$ 52.41万 - 项目类别:
Continuing Grant
CAREER: Data-aware Distributed Computing for Enabling Large-scale Collaborative Science
职业:数据感知分布式计算支持大规模协作科学
- 批准号:
1131889 - 财政年份:2011
- 资助金额:
$ 52.41万 - 项目类别:
Continuing Grant
CAREER: Data-aware Distributed Computing for Enabling Large-scale Collaborative Science
职业:数据感知分布式计算支持大规模协作科学
- 批准号:
0846052 - 财政年份:2009
- 资助金额:
$ 52.41万 - 项目类别:
Continuing Grant