FMSG: Cyber: Federated Deep Learning for Future Ubiquitous Distributed Additive Manufacturing

FMSG:网络:面向未来无处不在的分布式增材制造的联合深度学习

基本信息

  • 批准号:
    2134689
  • 负责人:
  • 金额:
    $ 49.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Distributed additive manufacturing has promising potential to connect and coordinate individual manufacturers for efficient, on-demand production. It can leverage the freeform fabrication of numerous additive manufacturers to form a flexible and robust supply chain and achieve reconfigurable mass customization in the future. However, product quality, consistency and privacy concerns among those distributed manufacturers pose a grand challenge to fully unleashing the potential of distributed additive manufacturing. This Future Manufacturing Seed Grant (FMSG) CyberManufacturing project will support fundamental research to provide needed knowledge for developing a unified algorithmic and training framework. The new framework, named FEDMDL, will lay a solid foundation to enable consistent and reliable production in a privacy-preserving, insight-sharing manufacturing network. This will further promote the adoption of additively manufactured parts in various industries, such as aerospace, automobile, healthcare, and will boost the participation of small-and-medium-sized manufacturers in the national supply chain. Therefore, results from this research will benefit the competitive advantages of US manufacturing and economy. This research provides manufacturing companies with the synergy of novel machine learning and federated computing techniques. The multi-disciplinary approach will help broaden the participation of underrepresented groups in research and positively impact engineering education. The unified algorithmic and training framework, FEDMDL, will chart a new theoretical path to enabling reliable production, consistent quality, and privacy-preserving data sharing in distributed additive manufacturing. FEDMDL will synthesize the fundamental physics of additive manufacturing processes into deep learning algorithms and train the new models on a federated learning cyberinfrastructure. In this seed grant, FEDMDL will be prototyped with fatigue performance assessment of additively manufactured metals in a distributed manufacturing network. The research team will: (1) conduct fatigue testing and defect characterization to understand material-defect-geometry-loading-fatigue relationships; (2) develop fracture-mechanics-centric deep learning models to approximate multi-physics multiscale processes and predict the fatigue performance of complex geometries under multiaxial loading; (3) design a cross-silo, additive-manufacturing-aware federated learning cyberinfrastructure to train the deep learning models with collective insights from the sparse, siloed datasets across manufacturers; and (4) evaluate the framework by deploying it in a real-world distributed additive manufacturing network. This work will result in an experimentally validated, generalizable algorithmic and training framework to catalyze research and applications in quality modeling, qualification, and control for future distributed additive manufacturing with collective intelligence.This project is jointly funded by the Division of Civil. Mechanical and Manufacturing Innovation, the Established Program to Stimulate Competitive Research (EPSCoR), and the Division of Electrical, Communications, and Cyber Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分布式添加剂制造具有有希望的潜力,可以连接和协调单个制造商,以进行高效的按需生产。它可以利用众多添加剂制造商的自由形式制造,形成灵活且稳健的供应链,并在将来实现可重构的大规模定制。但是,这些分布式制造商的产品质量,一致性和隐私问题在充分释放分布式添加剂制造的潜力方面构成了巨大的挑战。这项未来的制造种子赠款(FMSG)网络制造项目将支持基础研究,以提供开发统一算法和培训框架的所需知识。名为FEDMDL的新框架将奠定坚实的基础,以在隐私,洞察力共享的制造网络中实现一致可靠的生产。这将进一步促进在航空航天,汽车,医疗保健等各个行业中采用添加性生产的零件,并将促进中小型制造商参与国家供应链。因此,这项研究的结果将使美国制造业和经济的竞争优势受益。这项研究为制造公司提供了新型机器学习和联合计算技术的协同作用。多学科的方法将有助于扩大代表性不足的群体参与研究的参与,并积极影响工程教育。 统一的算法和培训框架FEDMDL将绘制一条新的理论途径,以实现可靠的生产,一致的质量和保护隐私的数据共享,以分布式添加剂制造。 FEDMDL将将添加剂制造过程的基本物理学综合为深度学习算法,并在联合学习网络基础架构上训练新模型。在此种子赠款中,FEDMDL将对分布式制造网络中的添加性生产金属进行疲劳性能评估。研究团队将:(1)进行疲劳测试和缺陷表征,以了解材料 - 缺陷 - 几何 - 加载效果关系; (2)开发以裂缝力学为中心的深度学习模型,以近似多物理多物理多尺度过程,并预测多轴负载下复杂几何形状的疲劳性能; (3)设计一个跨性别,添加剂制造的联合学习网络基础设施,以通过制造商的稀疏,孤立的数据集的集体见解来培训深度学习模型; (4)通过将其部署在现实世界分布式添加剂制造网络中来评估框架。这项工作将导致一个经过实验验证的,可概括的算法和培训框架,以促进与集体智能的未来分布式添加剂制造中的质量建模,资格和控制中的应用。该项目由民事部门共同资助。机械和制造创新,启发竞争研究的既定计划(EPSCOR)以及电气,通信和网络系统的部门。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来进行评估的。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SFS: Smart OS Scheduling for Serverless Functions
A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing
  • DOI:
    10.1007/s10845-022-02012-0
  • 发表时间:
    2022-09-15
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Liu, Jia;Ye, Jiafeng;Shao, Shuai
  • 通讯作者:
    Shao, Shuai
FedAT: A High-Performance and Communication-Efficient Federated Learning System with Asynchronous Tiers
Defect Criticality Analysis on Fatigue Life of L-PBF 17-4 PH Stainless Steel via Machine Learning
  • DOI:
    10.1016/j.ijfatigue.2022.107018
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Anyi Li;Shaharyar Baig;Jia Liu;Shuai Shao;N. Shamsaei
  • 通讯作者:
    Anyi Li;Shaharyar Baig;Jia Liu;Shuai Shao;N. Shamsaei
Defects Classification via Hierarchical Graph Convolutional Network in L-PBF Additive Manufacturing
L-PBF 增材制造中通过分层图卷积网络进行缺陷分类
共 5 条
  • 1
前往

Jia Liu其他文献

KNOWLEDGE FLOWS IN CHINA : A PATENT CITATIONS ANALYSIS Presented
中国的知识流动:专利引证分析
  • DOI:
  • 发表时间:
    2018
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jia Liu
    Jia Liu
  • 通讯作者:
    Jia Liu
    Jia Liu
Aberrant peripheral immune responses in acute Kawasaki disease with single-cell sequencing
通过单细胞测序发现急性川崎病的异常外周免疫反应
  • DOI:
  • 发表时间:
    2020
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhen Wang;Lijian Xie;Sirui Song;Liqin Chen;Guang Li;Jia Liu;T. Xiao;H. Zhang;Yujuan Huang;Guohui Ding;Yixue Li;Min Huang
    Zhen Wang;Lijian Xie;Sirui Song;Liqin Chen;Guang Li;Jia Liu;T. Xiao;H. Zhang;Yujuan Huang;Guohui Ding;Yixue Li;Min Huang
  • 通讯作者:
    Min Huang
    Min Huang
電力貯蔵装置を有する半導体変圧器の仮想同期機制御
带蓄电装置的半导体变压器虚拟同步机控制
  • DOI:
  • 发表时间:
    2020
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mustafa Al-Tameemi;Jia Liu;Hassan Bevrani;and Toshifumi Ise;小谷駿介・劉佳・三浦友史・阪部茂一・伊瀬敏史;小谷駿介・三浦友史・伊瀬敏史;樋口順也・三浦友史;樋口順也・三浦友史;樋口順也・三浦友史
    Mustafa Al-Tameemi;Jia Liu;Hassan Bevrani;and Toshifumi Ise;小谷駿介・劉佳・三浦友史・阪部茂一・伊瀬敏史;小谷駿介・三浦友史・伊瀬敏史;樋口順也・三浦友史;樋口順也・三浦友史;樋口順也・三浦友史
  • 通讯作者:
    樋口順也・三浦友史
    樋口順也・三浦友史
Two-dimensional plasma grating by non-collinear femtosecond filament interaction in air
空气中非共线飞秒灯丝相互作用的二维等离子体光栅
  • DOI:
    10.1063/1.3650709
    10.1063/1.3650709
  • 发表时间:
    2011-10
    2011-10
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Jia Liu;Wenxue Li;Haifeng Pan;Heping Zeng
    Jia Liu;Wenxue Li;Haifeng Pan;Heping Zeng
  • 通讯作者:
    Heping Zeng
    Heping Zeng
QAM Modulation Based on Lowest Energy Consumption in Passive CRFID
共 1206 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 242
前往

Jia Liu的其他基金

RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region
RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划
  • 批准号:
    2338987
    2338987
  • 财政年份:
    2023
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
  • 批准号:
    2239307
    2239307
  • 财政年份:
    2023
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
    Standard Grant
    Standard Grant
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
  • 批准号:
    2305729
    2305729
  • 财政年份:
    2023
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
    Standard Grant
    Standard Grant
Preparing to Care for a Culturally and Linguistically Diverse UK Patient Population: How Healthcare Students Develop Their Cultural Competence
准备照顾文化和语言多样化的英国患者群体:医疗保健学生如何发展他们的文化能力
  • 批准号:
    ES/W004860/1
    ES/W004860/1
  • 财政年份:
    2021
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
    Fellowship
    Fellowship
SpecEES: Toward Spectral and Energy Efficient Cross-Layer Designs for Millimeter-Wave-Based Massive MIMO Networks
SpecEES:面向基于毫米波的大规模 MIMO 网络的频谱和节能跨层设计
  • 批准号:
    2140277
    2140277
  • 财政年份:
    2021
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
    Standard Grant
    Standard Grant
CPS: Medium: An AI-enabled Cyber-Physical-Biological System for Cardiac Organoid Maturation
CPS:中:用于心脏类器官成熟的人工智能网络物理生物系统
  • 批准号:
    2038603
    2038603
  • 财政年份:
    2020
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
  • 批准号:
    2110259
    2110259
  • 财政年份:
    2020
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
    Continuing Grant
    Continuing Grant
NeTS: Small: Toward Optimal, Efficient, and Holistic Networking Design for Massive-MIMO Wireless Networks
NeTS:小型:面向大规模 MIMO 无线网络的优化、高效和整体网络设计
  • 批准号:
    2102233
    2102233
  • 财政年份:
    2020
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
  • 批准号:
    1943226
    1943226
  • 财政年份:
    2020
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
    Continuing Grant
    Continuing Grant
CIF: Small: Taming Convergence and Delay in Stochastic Network Optimization with Hessian Information
CIF:小:利用 Hessian 信息驯服随机网络优化中的收敛和延迟
  • 批准号:
    2110252
    2110252
  • 财政年份:
    2020
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

面向联邦学习的智能边缘网络服务关键技术研究
  • 批准号:
    62372185
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
跨边缘网络情境自适应联邦持续学习方法研究
  • 批准号:
    62302017
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
模型驱动的异构联邦边缘智能网络碳排放建模与优化
  • 批准号:
    62301516
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向移动网络开放环境的联邦强化学习
  • 批准号:
    62372296
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
分层联邦学习网络中客户端选择研究
  • 批准号:
    62302525
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CPS: Medium: Connected Federated Farms: Privacy-Preserving Cyber Infrastructure for Collaborative Smart Farming
CPS:中:互联联合农场:用于协作智能农业的隐私保护网络基础设施
  • 批准号:
    2212878
    2212878
  • 财政年份:
    2023
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
    Standard Grant
    Standard Grant
Securing Federated Communications in Cyber-Physical Energy Systems
确保网络物理能源系统中的联合通信安全
  • 批准号:
    569341-2022
    569341-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CCRI: Planning-C: Federated Cloud Platform for Networked Cyber Physical Systems Research
CCRI:Planning-C:网络信息物理系统研究联合云平台
  • 批准号:
    2213634
    2213634
  • 财政年份:
    2022
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
    Standard Grant
    Standard Grant
Data Science Core
数据科学核心
  • 批准号:
    10302201
    10302201
  • 财政年份:
    2021
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
A real-time federated co-simulator for cyber security analysis of microgrid systems
用于微电网系统网络安全分析的实时联合联合模拟器
  • 批准号:
    490971-2015
    490971-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 49.88万
    $ 49.88万
  • 项目类别:
    Engage Plus Grants Program
    Engage Plus Grants Program