CPS: Medium: An AI-enabled Cyber-Physical-Biological System for Cardiac Organoid Maturation

CPS:中:用于心脏类器官成熟的人工智能网络物理生物系统

基本信息

  • 批准号:
    2038603
  • 负责人:
  • 金额:
    $ 89.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The ability to determine and control the maturation of human-induced pluripotent stem cell (hiPSC) derived tissues is critical to tissue engineering, regenerative medicine, pharmacology, and synthetic biology, which requires the interrogation and intervention of cellular activities across the three-dimensional (3D) volume of tissues and over the time course of tissue development at cellular resolution. This proposal aims to build an AI-enabled cyber-physical-biological system to monitor and control the maturation of hiPSC derived cardiomyocyte (hiPSC-CM) organoids during development. The proposed research will develop “tissue-like” nanoelectronics that can be integrated into the developing cardiac organoids, distributing the electronic sensor and actuator network throughout the entire 3D volume of the tissue and enabling tissue-level recording and control over the entire time course of development at single-cell resolution. In situ single-cell RNA sequencing will be used to integrate gene expression data with continuous physical sensing data. Machine learning and statistical models will be built for interpreting the online sensing data, and cyber-control methods will be developed for the closed-loop online control of the cardiac organoid maturation. The developed hardware and software can be applied to virtually any current biological systems, in which the change of cellular states can be reliably recorded and controlled through the electronic sensors and actuators. The success of this proposal will further merge the field of AI, nanoelectronics, and biology, bringing unlimited opportunities for access and control to biological and biomedical engineering. The multidisciplinary teamwork will represent a successful case that schools of thought from diverse fields including bioengineering, machine learning, statistics, control theory, etc. inspire and complement each other to create state-of-the-art research results in each field. The research team will also collaborate with internal and external partners to launch educational and societal activities for students from diverse backgrounds, such as providing e-seminars, workshops and new courses for undergraduate students on advanced nanoelectronics fabrication, and workshops and tours for local K-12 students to explore stem cell culture, online videos to disseminate new research in genomics, mathematical and computational modeling, integration of AI, nanoelectronics, and biology.We propose to develop a seamless integration of cyber-physical systems with biological systems, enabling a closed-loop control, capable of real-time, bidirectionally, and long-term stably interrogating and intervening cellular activities across the 3D volume of tissue networks at single-cell resolution. As a demonstration, we will apply this cyber-physical-biological system to the hiPSC-CM organoids, promoting and accelerating their maturation. We will achieve our goal through the following 4 technical innovations: (A) developing technologies to integrate stretchable mesh nanoelectronics with multifunctional sensors and actuators to the cardiac organoids, enabling real-time monitoring and control of organoid development; (B) precisely registering electronic sensors during in situ single-cell RNA sequencing to determine the molecular maturation of cardiac organoids and correlate spatial gene expression profiling with sensing data at single-cell resolution; (C) developing novel machine learning models and tools to identify the statistical interference between gene expression and organoid-wide electrical and mechanical recording and also building online predictive models to real-time determine the maturation of cardiac organoids; (D) developing effective and scalable Reinforcement Learning (RL) methods to determine optimized electrical activation patterns to promote the maturation of cardiac organoids and to test its performance in patient-specific cardiac organoids.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
确定和控制人诱导多能干细胞 (hiPSC) 衍生组织成熟的能力对于组织工程、再生医学、药理学和合成生物学至关重要,这需要跨三维空间的细胞活动的询问和干预。 3D)组织体积以及细胞分辨率下组织发育的时间过程该提案旨在建立一个支持人工智能的网络物理生物系统来监测和控制 hiPSC 衍生心肌细胞(hiPSC-CM)的成熟。拟议的研究将开发“类组织”纳米电子学,可以集成到正在发育的心脏类器官中,将电子传感器和执行器网络分布在组织的整个 3D 体积中,并实现组织级记录和控制。单细胞分辨率的整个开发过程将用于将基因表达数据与连续物理传感数据相结合,以解释在线传感数据和网络数据。控制方法将开发的硬件和软件可用于几乎任何当前的生物系统,其中细胞状态的变化可以通过电子传感器和执行器可靠地记录和控制。该提案的成功将进一步融合人工智能、纳米电子学和生物学领域,为生物和生物医学工程带来无限的访问和控制机会,多学科团队合作将成为生物工程、机器等不同领域思想流派的成功案例。学习,统计学、控制理论等相互启发、相互补充,创造出各个领域最先进的研究成果。研究团队还将与内部和外部合作伙伴合作,为来自不同背景的学生开展教育和社会活动,例如为本科生提供有关先进纳米电子制造的电子研讨会、讲习班和新课程,为当地 K-12 学生提供探索干细胞培养的讲习班和参观活动、在线视频以传播基因组学、数学和计算建模、集成方面的新研究人工智能,我们建议开发网络物理系统与生物系统的无缝集成,实现闭环控制,能够实时、双向、长期稳定地询问和干预整个3D体积的细胞活动作为示范,我们将把这个网络物理生物系统应用于 hiPSC-CM 类器官,促进和加速其成熟,我们将通过以下 4 项技术来实现我们的目标。创新:(A) 将可拉伸网状纳米电子器件与多功能传感器和执行器集成到心脏类器官中的技术,从而能够实时监测和控制类器官的发育;(B) 在原位单细胞 RNA 测序过程中精确记录电子传感器以确定心脏类器官的分子成熟,并将空间基因表达谱与单细胞分辨率的传感数据相关联;(C) 开发新的机器学习模型和工具,以识别基因表达与类器官范围内的电和机械记录之间的统计干扰;实时确定心脏类器官成熟的在线预测模型;(D)开发有效且可扩展的强化学习(RL)方法来确定优化的电激活模式,以促进心脏类器官的成熟并测试其在特定患者心脏中的性能该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalable Reinforcement Learning for Multiagent Networked Systems
  • DOI:
    10.1287/opre.2021.2226
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guannan Qu;A. Wierman;N. Li
  • 通讯作者:
    Guannan Qu;A. Wierman;N. Li
Tissue-embedded stretchable nanoelectronics reveal endothelial cell-mediated electrical maturation of human 3D cardiac microtissues.
  • DOI:
    10.1126/sciadv.ade8513
  • 发表时间:
    2023-03-10
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Lin, Zuwan;Garbern, Jessica C.;Liu, Ren;Li, Qiang;Juncosa, Estela Mancheno;Elwell, Hannah L. T.;Sokol, Morgan;Aoyama, Junya;Deumer, Undine-Sophie;Hsiao, Emma;Sheng, Hao;Lee, Richard T.;Liu, Jia
  • 通讯作者:
    Liu, Jia
Zeroth-order feedback optimization for cooperative multi-agent systems
协作多智能体系统的零阶反馈优化
  • DOI:
    10.1016/j.automatica.2022.110741
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Tang, Yujie;Ren, Zhaolin;Li, Na
  • 通讯作者:
    Li, Na
Multimodal charting of molecular and functional cell states via in situ electro-sequencing
  • DOI:
    10.1016/j.cell.2023.03.023
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    64.5
  • 作者:
    Qiang Li;Zuwan Lin;Ren Liu;Xin-Hui Tang;Jiahao Huang;Yichun He;Xin Sui;Weiwen Tian;Haolan Shen;Haowen Zhou;Hao Sheng;Hailing Shi;Li Xiao;Xiao Wang;Jia Liu
  • 通讯作者:
    Qiang Li;Zuwan Lin;Ren Liu;Xin-Hui Tang;Jiahao Huang;Yichun He;Xin Sui;Weiwen Tian;Haolan Shen;Haowen Zhou;Hao Sheng;Hailing Shi;Li Xiao;Xiao Wang;Jia Liu
GAL: Gradient Assisted Learning for Decentralized Multi-Organization Collaborations
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Enmao Diao;Jie Ding;V. Tarokh
  • 通讯作者:
    Enmao Diao;Jie Ding;V. Tarokh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jia Liu其他文献

KNOWLEDGE FLOWS IN CHINA : A PATENT CITATIONS ANALYSIS Presented
中国的知识流动:专利引证分析
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jia Liu
  • 通讯作者:
    Jia Liu
Self-Sensing Origami-Inspired Soft Twisting Actuators and Its Application in Soft Robots
自感知折纸软扭转执行器及其在软体机器人中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Yang Yang;Shaoyang Yan;Yuan Xie;Yuchao Wang;Jia Liu;Yunquan Li;Jianshu Zhou
  • 通讯作者:
    Jianshu Zhou
Aberrant peripheral immune responses in acute Kawasaki disease with single-cell sequencing
通过单细胞测序发现急性川崎病的异常外周免疫反应
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhen Wang;Lijian Xie;Sirui Song;Liqin Chen;Guang Li;Jia Liu;T. Xiao;H. Zhang;Yujuan Huang;Guohui Ding;Yixue Li;Min Huang
  • 通讯作者:
    Min Huang
電力貯蔵装置を有する半導体変圧器の仮想同期機制御
带蓄电装置的半导体变压器虚拟同步机控制
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mustafa Al-Tameemi;Jia Liu;Hassan Bevrani;and Toshifumi Ise;小谷駿介・劉佳・三浦友史・阪部茂一・伊瀬敏史;小谷駿介・三浦友史・伊瀬敏史;樋口順也・三浦友史;樋口順也・三浦友史;樋口順也・三浦友史
  • 通讯作者:
    樋口順也・三浦友史
A fast query by humming system based on notes
一种基于音符的哼唱快速查询系统
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingzhou Yang;Jia Liu;Weiqiang Zhang
  • 通讯作者:
    Weiqiang Zhang

Jia Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jia Liu', 18)}}的其他基金

RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region
RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划
  • 批准号:
    2338987
  • 财政年份:
    2023
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Standard Grant
CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
  • 批准号:
    2239307
  • 财政年份:
    2023
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Standard Grant
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
  • 批准号:
    2305729
  • 财政年份:
    2023
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Standard Grant
Preparing to Care for a Culturally and Linguistically Diverse UK Patient Population: How Healthcare Students Develop Their Cultural Competence
准备照顾文化和语言多样化的英国患者群体:医疗保健学生如何发展他们的文化能力
  • 批准号:
    ES/W004860/1
  • 财政年份:
    2021
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Fellowship
FMSG: Cyber: Federated Deep Learning for Future Ubiquitous Distributed Additive Manufacturing
FMSG:网络:面向未来无处不在的分布式增材制造的联合深度学习
  • 批准号:
    2134689
  • 财政年份:
    2021
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Standard Grant
SpecEES: Toward Spectral and Energy Efficient Cross-Layer Designs for Millimeter-Wave-Based Massive MIMO Networks
SpecEES:面向基于毫米波的大规模 MIMO 网络的频谱和节能跨层设计
  • 批准号:
    2140277
  • 财政年份:
    2021
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
  • 批准号:
    2110259
  • 财政年份:
    2020
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Continuing Grant
NeTS: Small: Toward Optimal, Efficient, and Holistic Networking Design for Massive-MIMO Wireless Networks
NeTS:小型:面向大规模 MIMO 无线网络的优化、高效和整体网络设计
  • 批准号:
    2102233
  • 财政年份:
    2020
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
  • 批准号:
    1943226
  • 财政年份:
    2020
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Continuing Grant
CIF: Small: Taming Convergence and Delay in Stochastic Network Optimization with Hessian Information
CIF:小:利用 Hessian 信息驯服随机网络优化中的收敛和延迟
  • 批准号:
    2110252
  • 财政年份:
    2020
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CPS: Medium: AI-Boosted Precision Medicine through Continual in situ Monitoring of Microtissue Behaviors on Organs-on-Chips
合作研究:CPS:中:通过持续原位监测器官芯片上的微组织行为,人工智能推动精准医疗
  • 批准号:
    2225698
  • 财政年份:
    2022
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: AI-Boosted Precision Medicine through Continual in situ Monitoring of Microtissue Behaviors on Organs-on-Chips
合作研究:CPS:中:通过持续原位监测器官芯片上的微组织行为,人工智能推动精准医疗
  • 批准号:
    2225818
  • 财政年份:
    2022
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: RUI: Cooperative AI Inference in Vehicular Edge Networks for Advanced Driver-Assistance Systems
协作研究:CPS:中:RUI:高级驾驶员辅助系统车辆边缘网络中的协作人工智能推理
  • 批准号:
    2128341
  • 财政年份:
    2021
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: RUI: Cooperative AI Inferencein Vehicular Edge Networks for Advanced Driver-Assistance Systems
协作研究:CPS:中:RUI:用于高级驾驶员辅助系统的车辆边缘网络中的协作人工智能推理
  • 批准号:
    2128350
  • 财政年份:
    2021
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: RUI: Cooperative AI Inferencein Vehicular Edge Networks for Advanced Driver-Assistance Systems
协作研究:CPS:中:RUI:用于高级驾驶员辅助系统的车辆边缘网络中的协作人工智能推理
  • 批准号:
    2128378
  • 财政年份:
    2021
  • 资助金额:
    $ 89.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了