CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications

职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用

基本信息

  • 批准号:
    2239307
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

Metal additive manufacturing (AM) such as laser powder-bed fusion (LPBF) has been increasingly explored not only for product innovation, but also shop-floor production, demonstrated by growing success from a variety of industries. However, the lack of knowledge in both fatigue failure and the performance uncertainty of LPBF parts poses a significant challenge and undermines the potential of deploying LPBF for high-consequence applications. This Faculty Early Career Development (CAREER) award supports fundamental research to understand the effects of LPBF processing on defects and subsequent fatigue behavior, advance the knowledge of fatigue scattering of LPBF parts that are complex in geometry and subject to multiaxial loading. The effort will establish a physics-centric, machine learning framework for fatigue life predictions, serving as a technological foundation for future metal AM production of dynamic load-bearing applications, and thus, enhance the competitiveness of U.S. industry. This CAREER project will also integrate education and outreach programs designed to broaden the participation from underrepresented groups through actively engaging K-12 students for STEM education and recruiting women and minorities into research, priming future generations of diverse engineers with the knowledge and skills indispensable in the age of manufacturing innovation and big data.The ultimate goal of this early career effort is to understand fatigue failures of complex LPBF parts under multiaxial loading for data-driven fatigue life predictions. The research will investigate the nature of fatigue failures from plastic deformation and crack initiation at the highest stress concentrations and translate fatigue life predictions into evaluating the crack growth at the vulnerable zones using a multiscale approach. On the micro-scale, critical defects with crack-initiating features (by x-ray computed tomography or optical profilometry) will be identified based on the correlation with fatigue failures; both the effects of critical defects and their spatial interactions on crack growth will be examined using fracture mechanics and data-intense statistics. On the part scale, the weak regions of the highest stress concentrations will be examined by finite element modeling of stress and strain behaviors through decoupling multiaxial loading. The effects of critical defects and the principal stresses at vulnerable localities will then be incorporated into a hierarchical graph convolutional network of deep learning to model their synergistic impacts on crack growth and calculate the fatigue life of LPBF parts with advanced data analytics. The findings are expected to generate new knowledge of defect formation relevant to fatigue performance of LPBF parts, uncover the synergistic impacts of multiscale factors on fatigue fractures, and further LPBF adoption for high-consequence applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
金属添加剂制造(AM),例如激光粉末床融合(LPBF),不仅越来越多地探索产品创新,而且还越来越多地探索了商店地板生产,这表明了各种行业的成功越来越多。但是,在疲劳失败和LPBF零件的性能不确定性方面缺乏知识构成了重大挑战,并破坏了用于高分后应用的LPBF的潜力。这项教师早期职业发展(职业)奖支持基本研究,以了解LPBF处理对缺陷和随后的疲劳行为的影响,促进了解LPBF零件的疲劳散射,这些LPBF零件在几何形状上很复杂并受到多用途负载。这项努力将建立一个以物理性的,机器学习的框架,用于疲劳生活预测,为未来金属AM生产动态负载应用的生产是一个技术基础,从而增强了美国行业的竞争力。该职业项目还将整合旨在扩大代表性不足的群体的参与,通过积极参与K-12学生进行STEM教育的学生的参与,并将妇女和少数群体招募参与研究,从而使多元化工程师的后代具有知识和技能的知识和技能,这是在制造早期努力和大数据中的最终努力,以理解成果的最终努力。数据驱动的疲劳生活预测。该研究将研究最高应力浓度下的塑性变形和裂纹启动疲劳失败的性质,并将疲劳寿命预测转化为使用多尺度方法评估脆弱区域的裂纹生长。在微尺度上,将基于与疲劳失败的相关性确定具有裂纹发射特征(通过X射线计算机断层扫描或光学术法)的临界缺陷;临界缺陷及其空间相互作用对裂纹生长的影响都将使用断裂力学和数据强统计量进行检查。在零件尺度上,应通过将多轴负荷解耦的应力和应变行为的有限元模型来检查最高应力浓度的弱区域。然后,危害缺陷和弱势局部区域的主要应力的影响将纳入深度学习的分层图卷积网络中,以模拟其对裂纹增长的协同影响,并通过先进的数据分析来计算LPBF部分的疲劳寿命。这些发现有望产生与LPBF部分疲劳性能相关的缺陷形成知识,发现多尺度因素对疲劳性骨折的协同影响,并进一步采用了高度影响力应用的LPBF。该奖项反映了NSF的法定任务,并通过评估范围来评估范围,并通过评估范围来进行评估和范围的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Jia Liu其他文献

KNOWLEDGE FLOWS IN CHINA : A PATENT CITATIONS ANALYSIS Presented
中国的知识流动:专利引证分析
  • DOI:
  • 发表时间:
    2018
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jia Liu
    Jia Liu
  • 通讯作者:
    Jia Liu
    Jia Liu
Aberrant peripheral immune responses in acute Kawasaki disease with single-cell sequencing
通过单细胞测序发现急性川崎病的异常外周免疫反应
  • DOI:
  • 发表时间:
    2020
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhen Wang;Lijian Xie;Sirui Song;Liqin Chen;Guang Li;Jia Liu;T. Xiao;H. Zhang;Yujuan Huang;Guohui Ding;Yixue Li;Min Huang
    Zhen Wang;Lijian Xie;Sirui Song;Liqin Chen;Guang Li;Jia Liu;T. Xiao;H. Zhang;Yujuan Huang;Guohui Ding;Yixue Li;Min Huang
  • 通讯作者:
    Min Huang
    Min Huang
電力貯蔵装置を有する半導体変圧器の仮想同期機制御
带蓄电装置的半导体变压器虚拟同步机控制
  • DOI:
  • 发表时间:
    2020
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mustafa Al-Tameemi;Jia Liu;Hassan Bevrani;and Toshifumi Ise;小谷駿介・劉佳・三浦友史・阪部茂一・伊瀬敏史;小谷駿介・三浦友史・伊瀬敏史;樋口順也・三浦友史;樋口順也・三浦友史;樋口順也・三浦友史
    Mustafa Al-Tameemi;Jia Liu;Hassan Bevrani;and Toshifumi Ise;小谷駿介・劉佳・三浦友史・阪部茂一・伊瀬敏史;小谷駿介・三浦友史・伊瀬敏史;樋口順也・三浦友史;樋口順也・三浦友史;樋口順也・三浦友史
  • 通讯作者:
    樋口順也・三浦友史
    樋口順也・三浦友史
Two-dimensional plasma grating by non-collinear femtosecond filament interaction in air
空气中非共线飞秒灯丝相互作用的二维等离子体光栅
  • DOI:
    10.1063/1.3650709
    10.1063/1.3650709
  • 发表时间:
    2011-10
    2011-10
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Jia Liu;Wenxue Li;Haifeng Pan;Heping Zeng
    Jia Liu;Wenxue Li;Haifeng Pan;Heping Zeng
  • 通讯作者:
    Heping Zeng
    Heping Zeng
QAM Modulation Based on Lowest Energy Consumption in Passive CRFID
共 1206 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 242
前往

Jia Liu的其他基金

RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region
RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划
  • 批准号:
    2338987
    2338987
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
  • 批准号:
    2305729
    2305729
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
FMSG: Cyber: Federated Deep Learning for Future Ubiquitous Distributed Additive Manufacturing
FMSG:网络:面向未来无处不在的分布式增材制造的联合深度学习
  • 批准号:
    2134689
    2134689
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
Preparing to Care for a Culturally and Linguistically Diverse UK Patient Population: How Healthcare Students Develop Their Cultural Competence
准备照顾文化和语言多样化的英国患者群体:医疗保健学生如何发展他们的文化能力
  • 批准号:
    ES/W004860/1
    ES/W004860/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Fellowship
    Fellowship
SpecEES: Toward Spectral and Energy Efficient Cross-Layer Designs for Millimeter-Wave-Based Massive MIMO Networks
SpecEES:面向基于毫米波的大规模 MIMO 网络的频谱和节能跨层设计
  • 批准号:
    2140277
    2140277
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
CPS: Medium: An AI-enabled Cyber-Physical-Biological System for Cardiac Organoid Maturation
CPS:中:用于心脏类器官成熟的人工智能网络物理生物系统
  • 批准号:
    2038603
    2038603
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
  • 批准号:
    2110259
    2110259
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Continuing Grant
    Continuing Grant
NeTS: Small: Toward Optimal, Efficient, and Holistic Networking Design for Massive-MIMO Wireless Networks
NeTS:小型:面向大规模 MIMO 无线网络的优化、高效和整体网络设计
  • 批准号:
    2102233
    2102233
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
  • 批准号:
    1943226
    1943226
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Continuing Grant
    Continuing Grant
CIF: Small: Taming Convergence and Delay in Stochastic Network Optimization with Hessian Information
CIF:小:利用 Hessian 信息驯服随机网络优化中的收敛和延迟
  • 批准号:
    2110252
    2110252
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

新发展格局背景下参与全球价值链对中国制造业空间集聚的影响机制、效应评估及政策研究
  • 批准号:
    42301202
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
数字制造业集聚对供应链中断的缓冲机制研究
  • 批准号:
    72303034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
政府补贴对制造业绿色创新韧性的影响机理、效果评估与政策优化研究
  • 批准号:
    72304141
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
先进制造业服务化组织障碍成因及调节机制研究
  • 批准号:
    72302069
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
创新链管理视角下高端装备制造业开放创新的风险识别、评估与治理对策研究
  • 批准号:
    72304262
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FMRG: Cyber: Manufacturing USA: Material-on-demand manufacturing through convergence of manufacturing, AI and materials science
FMRG:网络:美国制造:通过制造、人工智能和材料科学的融合实现按需制造材料
  • 批准号:
    2328395
    2328395
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
FMRG: Cyber: Manufacturing USA: NextG-Enabled Manufacturing of the Future (NextGEM)
FMRG:网络:美国制造:支持 NextG 的未来制造 (NextGEM)
  • 批准号:
    2328260
    2328260
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
FMRG: Cyber: Manufacturing USA: Manufacturing of Next-Generation Perovskite Semiconductors at Scale
FMRG:网络:美国制造:大规模制造下一代钙钛矿半导体
  • 批准号:
    2328010
    2328010
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
ERI: Manufacturing USA: Additive Manufacturing of Iron based Shape Memory Alloy
ERI:美国制造:铁基形状记忆合金的增材制造
  • 批准号:
    2301766
    2301766
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
FMRG: Cyber: Manufacturing USA: Exploiting Spatio-Temporal Interdependency Between Electrochemical Manufacturing and Power Grid to Optimize Flexibility and Sustainability
FMRG:网络:美国制造:利用电化学制造和电网之间的时空相互依赖性来优化灵活性和可持续性
  • 批准号:
    2328160
    2328160
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant