PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
基本信息
- 批准号:2044710
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Partnerships for Innovation - Technology Translation (PFI-TT) project is fast and accurate computer simulation software to predict when and why flaws are formed in metal parts made using additive manufacturing (3D printing). Given its singular design and material flexibility, metal additive manufacturing (metal AM) has the potential to revolutionize U.S. manufacturing by improving part performance and reducing waste and processing costs. However, safety-conscious industries, such as aerospace and biomedical, are hesitant to adopt AM processes due to the frequent occurrence of parts with hidden flaws. Traditional approaches for detecting and correcting flaws involve determining and adjusting the process parameters that lead to defects using a trial-and-error approach, which is expensive and time-consuming. This innovative project utilizes a computational simulation software to identify and correct design and processing problems before a part is printed. Importantly, this approach will provide scientific insights into why certain process parameters and part design features result in defect formation. This efficient and cost-effective method for detecting and correcting flaws in AM parts will enable their wide-spread commercialization and adoption. Ultimately, using AM processes rather than traditional manufacturing may save businesses time and resources while increasing part efficiency and reducing negative environmental impacts. This project will verify, validate, and commercialize a computational heat transfer modeling approach to simulate the temperature distribution in parts made using metal AM. This technology, which is based on the novel concept of heat diffusion on graphs (graph theory), aims to predict and correct design and processing problems before a part is printed. This capability would ultimately lead to improved AM part quality and increased use of AM processes in precision-critical industries. Existing simulation packages are expensive and incorporate proprietary assumptions. Non-proprietary approaches, in turn, take hours, if not days, to simulate the thermal history for a simple part. Prior work by the research team has demonstrated that the graph theory approach is approximately twenty times faster than non-proprietary methods and so computationally lightweight that it could be deployed on a laptop or smartphone. In moving toward commercializing the technology, the project team will employ practical use case samples produced by their industrial partners. The work will address two fundamental research questions: (1) What process conditions and part design features are linked to specific temperature patterns and why? (2) What is the influence of thermal history on flaw formation? The technical results from this project may include a rigorous, experimentally validated, computationally efficient, user-friendly, and industrially corroborated thermal simulation approach that can be used for rapid physics-based optimization of part design and process settings in metal AM.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该创新合作伙伴关系 - 技术转化 (PFI-TT) 项目具有更广泛的影响/商业潜力,它是一种快速、准确的计算机模拟软件,可预测使用增材制造(3D 打印)制造的金属零件何时以及为何形成缺陷。鉴于其独特的设计和材料灵活性,金属增材制造(金属 AM)有可能通过提高零件性能并减少浪费和加工成本来彻底改变美国制造业。然而,由于经常出现存在隐藏缺陷的零件,航空航天和生物医学等具有安全意识的行业对于采用增材制造工艺犹豫不决。检测和纠正缺陷的传统方法涉及使用试错法来确定和调整导致缺陷的工艺参数,这种方法既昂贵又耗时。该创新项目利用计算模拟软件在打印零件之前识别并纠正设计和加工问题。重要的是,这种方法将为为什么某些工艺参数和零件设计特征导致缺陷形成提供科学见解。这种高效且经济高效的检测和纠正增材制造零件缺陷的方法将使其广泛商业化和采用。最终,使用增材制造工艺而不是传统制造可以节省企业的时间和资源,同时提高零件效率并减少负面环境影响。该项目将验证、验证计算传热建模方法并将其商业化,以模拟使用金属增材制造制造的零件的温度分布。该技术基于图形热扩散的新颖概念(图论),旨在在打印零件之前预测并纠正设计和加工问题。这种能力最终将提高增材制造零件的质量,并增加增材制造工艺在精度关键行业中的使用。现有的仿真包价格昂贵并且包含专有假设。反过来,非专有方法需要花费数小时甚至数天的时间来模拟简单零件的热历史。研究团队之前的工作已经证明,图论方法比非专有方法快大约二十倍,而且计算量轻,可以部署在笔记本电脑或智能手机上。在将该技术商业化的过程中,项目团队将采用其工业合作伙伴制作的实际用例样本。这项工作将解决两个基本研究问题:(1)哪些工艺条件和零件设计特征与特定的温度模式相关,为什么? (2) 热历史对缺陷形成有何影响?该项目的技术成果可能包括严格的、经过实验验证、计算高效、用户友好且经过工业验证的热模拟方法,可用于金属增材制造中零件设计和工艺设置的快速基于物理的优化。该奖项反映了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi phenomena melt pool sensor data fusion for enhanced process monitoring of laser powder bed fusion additive manufacturing
多现象熔池传感器数据融合,用于增强激光粉末床熔融增材制造的过程监控
- DOI:10.1016/j.matdes.2022.110919
- 发表时间:2022-09
- 期刊:
- 影响因子:8.4
- 作者:Gaikwad, Aniruddha;Williams, Richard J.;de Winton, Harry;Bevans, Benjamin D.;Smoqi, Ziyad;Rao, Prahalada;Hooper, Paul A.
- 通讯作者:Hooper, Paul A.
Feedforward control of thermal history in laser powder bed fusion: Toward physics-based optimization of processing parameters
激光粉末床熔合热历史的前馈控制:基于物理的加工参数优化
- DOI:10.1016/j.matdes.2022.111351
- 发表时间:2022-12
- 期刊:
- 影响因子:8.4
- 作者:Riensche, Ale;Bevans, Benjamin D.;Smoqi, Ziyad;Yavari, Reza;Krishnan, Ajay;Gilligan, Josie;Piercy, Nicholas;Cole, Kevin;Rao, Prahalada
- 通讯作者:Rao, Prahalada
Thermal modeling of directed energy deposition additive manufacturing using graph theory
使用图论进行定向能量沉积增材制造的热建模
- DOI:10.1108/rpj-07-2021-0184
- 发表时间:2022-08
- 期刊:
- 影响因子:3.9
- 作者:Riensche, Ale;Severson, Jordan;Yavari, Reza;Piercy, Nicholas L.;Cole, Kevin D.;Rao, Prahalada
- 通讯作者:Rao, Prahalada
Prediction of recoater crash in laser powder bed fusion additive manufacturing using graph theory thermomechanical modeling
使用图论热机械建模预测激光粉末床熔融增材制造中的重涂机碰撞
- DOI:10.1007/s40964-022-00331-5
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Kobir, Md. Humaun;Yavari, Reza;Riensche, Alexander R.;Bevans, Benjamin D.;Castro, Leandro;Cole, Kevin D.;Rao, Prahalada
- 通讯作者:Rao, Prahalada
Discrete Green’s functions and spectral graph theory for computationally efficient thermal modeling
离散格林函数和谱图理论,用于计算高效的热建模
- DOI:10.1016/j.ijheatmasstransfer.2021.122112
- 发表时间:2022-02
- 期刊:
- 影响因子:5.2
- 作者:Cole, Kevin D.;Riensche, Ale;Rao, Prahalada K.
- 通讯作者:Rao, Prahalada K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prahalada Rao其他文献
Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing
深度神经算子支持增材制造数字孪生建模
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ning Liu;Xuxiao Li;M. Rajanna;E. Reutzel;Brady A Sawyer;Prahalada Rao;Jim Lua;Nam Phan;Yue Yu - 通讯作者:
Yue Yu
Generating synthetic as-built additive manufacturing surface topography using progressive growing generative adversarial networks
使用渐进式增长的生成对抗网络生成合成的增材制造表面形貌
- DOI:
10.1007/s40544-023-0826-7 - 发表时间:
2023-12-04 - 期刊:
- 影响因子:6.8
- 作者:
Junhyeon Seo;Prahalada Rao;B. Raeymaekers - 通讯作者:
B. Raeymaekers
Effect of processing parameters and thermal history on microstructure evolution and functional properties in laser powder bed fusion of 316L
加工参数和热历史对 316L 激光粉末床熔合微观结构演变和功能性能的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kaustubh Deshmukh;A. Riensche;Ben Bevans;Ryan J. Lane;Kyle Snyder;H. Halliday;Christopher B. Williams;Reza Mirzaeifar;Prahalada Rao - 通讯作者:
Prahalada Rao
Stochastic Modeling and Analysis of Spindle Power During Hard Milling With a Focus on Tool Wear
以刀具磨损为重点的硬铣削过程中主轴功率的随机建模和分析
- DOI:
10.1115/1.4040728 - 发表时间:
2018-08-31 - 期刊:
- 影响因子:0
- 作者:
Xingtao Wang;Robert E. Williams;M. Sealy;Prahalada Rao;Yuebin B. Guo - 通讯作者:
Yuebin B. Guo
Predicting meltpool depth and primary dendritic arm spacing in laser powder bed fusion using physics-based machine learning
使用基于物理的机器学习预测激光粉末床熔合中的熔池深度和初级枝晶臂间距
- DOI:
10.1016/j.matdes.2023.112540 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:0
- 作者:
A. Riensche;Ben Bevans;Grant King;Ajay Krishnan;Kevin D. Cole;Prahalada Rao - 通讯作者:
Prahalada Rao
Prahalada Rao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prahalada Rao', 18)}}的其他基金
PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
- 批准号:
2322322 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
- 批准号:
2309483 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RII Track-4: Understanding the Fundamental Thermal Physics in Metal Additive Manufacturing and its Influence on Part Microstructure and Distortion.
RII Track-4:了解金属增材制造中的基础热物理及其对零件微观结构和变形的影响。
- 批准号:
1929172 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
- 批准号:
1752069 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Cyber-Enabled Online Quality Assurance for Scalable Additive Bio-Manufacturing
CPS:媒介:协作研究:可扩展增材生物制造的网络在线质量保证
- 批准号:
1739696 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
- 批准号:
1719388 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
- 批准号:
1538059 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
苯并呋喃-6-酮类化合物TT01f通过调控Jagged1/Notch信号通路改善特发性肺纤维化的药理学机制研究
- 批准号:82304596
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TT3.2通过自噬体-液泡途径调控水稻盐胁迫抗性的分子机制研究
- 批准号:32301745
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
核用690TT合金传热管表面划伤诱导应力腐蚀裂纹萌生机理研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
TT02通过巨噬细胞外囊泡miR-122/Wnt途径拮抗石英诱导肺纤维化的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
- 批准号:
2322322 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT: Ultrafast Electrochemical Capacitors for Electronic and Energy Applications
PFI-TT:用于电子和能源应用的超快电化学电容器
- 批准号:
2122921 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT: Development of a Software-Reconfigurable, Ultrafast Spectroscopic Microscope
PFI-TT:软件可重构、超快光谱显微镜的开发
- 批准号:
2016356 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT: Development of a Software-Reconfigurable, Ultrafast Spectroscopic Microscope
PFI-TT:软件可重构、超快光谱显微镜的开发
- 批准号:
2016356 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT: Rechargeable Batteries with Ultrafast Charging Capability and Long Usage Time per Charge
PFI-TT:具有超快充电能力和每次充电使用时间长的充电电池
- 批准号:
1918991 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant