CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.

职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。

基本信息

  • 批准号:
    1752069
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Smart Manufacturing strives to monitor every aspect of the manufacturing enterprise - from the individual machine-level to the factory-level - using data gathered from multiple sensors. Resulting efficiencies can reduce product defects and manufacturing costs by over 25 percent. When coupled with Additive Manufacturing, Smart Manufacturing promises to transform U.S. industry. For example, 20 pounds of raw material are currently required to make a one-pound part for the aerospace industry using subtractive machining. Additive Manufacturing can reduce this so-called buy-to-fly ratio of 20:1 to 2:1, while simultaneously reducing lead time from six months to one week. Realization of these potential manufacturing gains will advance the national prosperity and welfare by increasing U.S. advanced manufacturing competitiveness. Despite these advantages, industries are hesitant to adopt Additive Manufacturing due to process inconsistency - parts may have undetected defects, such as porosity, that make them unsafe for use in mission-critical applications. A potential solution to this problem is a concept called Smart Additive Manufacturing, which melds the ideas of Smart Manufacturing with Additive Manufacturing. Through this Faculty Early Career Development Program (CAREER) award, in-process sensor data will be utilized to understand the mechanisms of defect formation occurring during the Laser Powder Bed Fusion Additive Manufacturing process. Advanced data analysis approaches that incorporate the new fundamental understanding of defect evolution will be leveraged to realize a robust correct-as-you-build methodology. This foundational work will find application across many manufacturing sectors including aerospace and defense. The award will also facilitate a discovery-based learning approach to engage learners in hands-on exploration of Additive Manufacturing at multiple levels. A research collaboration with Navajo Technical University will be initiated to further broaden project impact and train the advanced manufacturing workforce of the future. The research goal of this project is to establish a Smart Additive Manufacturing framework for alleviating the poor part quality in the Laser Powder Bed Fusion-based Additive Manufacturing of metals. Success will result in a hybrid Additive Manufacturing strategy that combines material deposition (additive) and material removal (subtractive) actions within the same machine potentially giving rise to zero-defect parts. The research challenges addressed by this award include: 1) understanding how and why certain defects are formed by isolating and quantifying the underlying process phenomena as they happen in real-time using in-process sensors, 2) advancing the mathematics of spectral graph theory to capture defects from heterogeneous sensors in real-time - a big data problem, and 3) forwarding reduced-order models to understand the physical thermomechanical dynamics, such as layer re-melting and reflow, that occur when defects are corrected with hybrid Laser Powder Bed Fusion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
智能制造致力于使用从多个传感器收集的数据来监控制造企业的各个方面 - 从单个机器级别到工厂级别。由此产生的效率可将产品缺陷和制造成本减少 25% 以上。智能制造与增材制造相结合,有望改变美国工业。例如,目前使用减材加工为航空航天工业制造一磅重的零件需要 20 磅原材料。增材制造可以将这种所谓的“买飞比”从 20:1 降低到 2:1,同时将交货时间从六个月缩短到一周。实现这些潜在的制造业收益将通过提高美国先进制造业的竞争力来促进国家繁荣和福利。尽管有这些优势,但由于工艺不一致,各行业对采用增材制造仍犹豫不决——零件可能存在未检测到的缺陷,例如孔隙率,这使得它们在关键任务应用中使用不安全。这个问题的一个潜在解决方案是智能增材制造的概念,它将智能制造与增材制造的思想融合在一起。通过该学院早期职业发展计划(CAREER)奖,将利用过程中的传感器数据来了解激光粉床融合增材制造过程中发生缺陷形成的机制。将利用结合了对缺陷演变的新基本理解的高级数据分析方法来实现强大的“即建即正确”方法。这项基础工作将在包括航空航天和国防在内的许多制造领域得到应用。该奖项还将促进基于发现的学习方法,让学习者在多个层面上对增材制造进行实践探索。将启动与纳瓦霍技术大学的研究合作,以进一步扩大项目影响并培训未来的先进制造劳动力。该项目的研究目标是建立一个智能增材制造框架,以缓解基于激光粉床熔融的金属增材制造中零件质量差的问题。成功将带来混合增材制造策略,该策略将材料沉积(增材)和材料去除(减材)操作结合在同一台机器内,有可能产生零缺陷零件。该奖项解决的研究挑战包括:1) 通过使用过程传感器实时隔离和量化潜在的过程现象,了解某些缺陷是如何以及为何形成的,2) 推进谱图理论的数学发展实时捕获来自异构传感器的缺陷 - 这是一个大数据问题,3)转发降阶模型以了解物理热机械动力学,例如使用混合激光粉末床校正缺陷时发生的层重熔和回流融合.This该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Defect Detection and Monitoring in Metal Additive Manufactured Parts through Deep Learning of Spatially Resolved Acoustic Spectroscopy Signals
通过空间分辨声谱信号的深度学习来检测和监测金属增材制造零件中的缺陷
  • DOI:
    10.1520/ssms20180035
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Williams, Jacob;Dryburgh, Paul;Clare, Adam;Rao, Prahalada;Samal, Ashok
  • 通讯作者:
    Samal, Ashok
Monitoring and prediction of porosity in laser powder bed fusion using physics-informed meltpool signatures and machine learning
使用物理信息熔池特征和机器学习监测和预测激光粉末床熔合中的孔隙率
  • DOI:
    10.1016/j.jmatprotec.2022.117550
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Smoqi, Ziyad;Gaikwad, Aniruddha;Bevans, Benjamin;Kobir, Md Humaun;Craig, James;Abul;Peralta, Alonso;Rao, Prahalada
  • 通讯作者:
    Rao, Prahalada
Thermal Modeling in Metal Additive Manufacturing Using Graph Theory: Experimental Validation With In-Situ Infrared Thermography Data From Laser Powder Bed Fusion
使用图论进行金属增材制造中的热建模:利用激光粉末床熔合的原位红外热成像数据进行实验验证
Flaw Detection in Wire Arc Additive Manufacturing Using In-Situ Acoustic Sensing and Graph Signal Analysis
使用原位声学传感和图形信号分析进行电弧增材制造中的缺陷检测
  • DOI:
    10.1115/msec2023-101622
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bevans, Benjamin;Ramalho, André;Smoqi, Ziyad;Gaikwad, Aniruddha;Santos, Telmo G.;Rao, Prahalad;Oliveira, J. P.
  • 通讯作者:
    Oliveira, J. P.
In-process monitoring and prediction of droplet quality in droplet-on-demand liquid metal jetting additive manufacturing using machine learning
使用机器学习对按需液滴液态金属喷射增材制造中的液滴质量进行过程监控和预测
  • DOI:
    10.1007/s10845-022-01977-2
  • 发表时间:
    2022-06-26
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    A. Gaikwad;Tammy Chang;B. Giera;N. Watkins;S. Mukherjee;A. Pascall;D. Stobbe;Prahalada K. Rao
  • 通讯作者:
    Prahalada K. Rao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prahalada Rao其他文献

Effect of processing parameters and thermal history on microstructure evolution and functional properties in laser powder bed fusion of 316L
加工参数和热历史对 316L 激光粉末床熔合微观结构演变和功能性能的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaustubh Deshmukh;A. Riensche;Ben Bevans;Ryan J. Lane;Kyle Snyder;H. Halliday;Christopher B. Williams;Reza Mirzaeifar;Prahalada Rao
  • 通讯作者:
    Prahalada Rao
Predicting meltpool depth and primary dendritic arm spacing in laser powder bed fusion using physics-based machine learning
使用基于物理的机器学习预测激光粉末床熔合中的熔池深度和初级枝晶臂间距
  • DOI:
    10.1016/j.matdes.2023.112540
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Riensche;Ben Bevans;Grant King;Ajay Krishnan;Kevin D. Cole;Prahalada Rao
  • 通讯作者:
    Prahalada Rao
Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing
深度神经算子支持增材制造数字孪生建模
Stochastic Modeling and Analysis of Spindle Power During Hard Milling With a Focus on Tool Wear
以刀具磨损为重点的硬铣削过程中主轴功率的随机建模和分析

Prahalada Rao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prahalada Rao', 18)}}的其他基金

PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
  • 批准号:
    2322322
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
  • 批准号:
    2309483
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
  • 批准号:
    2044710
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RII Track-4: Understanding the Fundamental Thermal Physics in Metal Additive Manufacturing and its Influence on Part Microstructure and Distortion.
RII Track-4:了解金属增材制造中的基础热物理及其对零件微观结构和变形的影响。
  • 批准号:
    1929172
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Cyber-Enabled Online Quality Assurance for Scalable Additive Bio-Manufacturing
CPS:媒介:协作研究:可扩展增材生物制造的网络在线质量保证
  • 批准号:
    1739696
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
  • 批准号:
    1719388
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
  • 批准号:
    1538059
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于“活性-代谢组-基因组-SMART”整合策略发掘老鼠簕内生放线菌新型先导化合物
  • 批准号:
    82360696
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于SMART设计建立中医药随机对照试验“随证施治”决策模型的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

LEAP-HI: GOALI: Accelerating Design for Additive Manufacturing of Smart Multimaterial Devices
LEAP-HI:GOALI:加速智能多材料设备增材制造的设计
  • 批准号:
    2401218
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Additive Manufacturing of Polymer-based Smart Materials for Energy Harvesting Applications
用于能量收集应用的聚合物智能材料的增材制造
  • 批准号:
    560184-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
LEAP-HI: GOALI: Accelerating Design for Additive Manufacturing of Smart Multimaterial Devices
LEAP-HI:GOALI:加速智能多材料设备增材制造的设计
  • 批准号:
    2152984
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
  • 批准号:
    2309483
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Additive Manufacturing of Soft, Smart Composites
柔软、智能复合材料的增材制造
  • 批准号:
    RGPIN-2020-04603
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了