RII Track-4: Understanding the Fundamental Thermal Physics in Metal Additive Manufacturing and its Influence on Part Microstructure and Distortion.
RII Track-4:了解金属增材制造中的基础热物理及其对零件微观结构和变形的影响。
基本信息
- 批准号:1929172
- 负责人:
- 金额:$ 14.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The 3D printing of metal parts promises to transform U.S. manufacturing. For example, metal additive manufacturing (AM) has the potential to reduce time-to-market for a new jet engine from five years to one year, while simultaneously increasing fuel efficiency and power by 10%. Poor consistency in part quality, however, limits the use of AM. As a result, safety-conscious industries (e.g., aerospace and biomedical fields) are reluctant to use AM processes to make mission-critical parts. The root cause for flaw formation in metal AM is the uneven temperature distribution inside the part during printing. To ensure a steady temperature distribution inside the part, practitioners currently use trial-and-error studies that require experimenting with different process settings and part designs – an expensive and time-consuming approach. A more efficient solution involves encapsulating the fundamental thermal physics of the printing process using computer simulation models. These simulation models can be used to identify and correct problems that can lead to an uneven temperature distribution in the part before it is built. The PI has advanced a new mathematical approach to predict the temperature distribution in AM parts that takes less than one-tenth of the time required by existing techniques and has an error of less than 10%. Rigorous validation of this concept with experimental data is the next step to scale this new concept to practice. The objective of this fellowship is to test the hypothesis that the instantaneous spatiotemporal distribution of temperature generated in a metal AM part as it is being deposited layer-upon-layer is predicted by invoking the novel theory of heat dissipation on planar graphs (spectral graph theory) with an accuracy comparable to existing finite element techniques but within a fraction of the computation time (less than 1/10th). To realize this objective, this fellowship provides the PI access to the Open Architecture Laser Powder Bed Fusion metal AM system at the Edison Welding Institute (EWI). This system has eight different sensors and allows the in-situ measurement of thermal signatures at scales ranging from 5 micrometer to 400 micrometers. Access to this unique apparatus will allow the PI to measure the instantaneous temperature distribution in a part and track changes in its shape with unprecedented precision. Using data obtained from experiments on the open architecture metal AM system at EWI, the PI will: (1) explain and an quantify the causal factors governing the temperature distribution in metal AM parts and link it to part quality; (2) achieve near real-time prediction of the temperature distribution, which will significantly reduce the experimental tests needed to optimize the part geometry and process parameters; and (3) establish the digital twin concept for qualification of metal AM parts by augmenting in-situ sensor data with physical process models. This work will result in experimentally validated, physics-based tools to aid rapid optimization of process settings and part geometry, which in turn will shorten time-to-market for AM parts and reduce scrap rates by up to 80%.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
金属零件的 3D 打印有望改变美国制造业,例如,金属增材制造 (AM) 有可能将新型喷气发动机的上市时间从五年缩短到一年,同时提高燃油效率和功率。然而,零件质量的一致性差限制了增材制造的使用,因此,具有安全意识的行业(例如航空航天和生物医学领域)不愿意使用增材制造工艺来制造关键任务零件。用于缺陷形成金属增材制造的一个问题是打印过程中零件内部温度分布不均匀,为了确保零件内部温度分布稳定,从业者目前采用试错法研究,需要试验不同的工艺设置和零件设计,这是一项昂贵且耗时的工作。更有效的解决方案是使用计算机模拟模型封装打印过程的基本热物理原理,这些模拟模型可用于在构建之前识别和纠正可能导致零件温度分布不均匀的问题。提出了一种新的数学方法来预测增材制造零件的温度分布所需时间不到现有技术的十分之一,并且误差小于 10%,下一步是将这一新概念推广到实践。测试这样的假设:金属增材制造零件在逐层沉积时产生的瞬时时空温度分布是通过调用平面图散热的新理论(谱图理论)来预测的。精度与现有有限元技术相当,但计算时间仅为一小部分(不到 1/10)。为了实现这一目标,该奖学金为 PI 提供了访问爱迪生焊接研究所的开放式架构激光粉末床熔融金属增材制造系统的权限。 (EWI)。该系统有八个不同的传感器,可以在 5 微米到 400 微米的范围内进行热特征测量。使用这种独特的设备将使 PI 能够测量热特征。使用从 EWI 开放式架构金属增材制造系统实验中获得的数据,PI 将:(1) 解释并量化控制零件中温度分布的因果因素。金属增材制造零件并将其与零件质量联系起来;(2)实现温度分布的近实时预测,这将显着减少优化零件几何形状和工艺参数所需的实验测试;(3)建立数字孪生概念;通过增强原位传感器来鉴定金属增材制造零件这项工作将产生经过实验验证的基于物理的工具,以帮助快速优化工艺设置和零件几何形状,从而缩短增材制造零件的上市时间并将废品率降低高达 80%。 %.该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Part-scale Thermal Simulation of Laser Powder Bed Fusion Using Graph Theory: Effect of Thermal History on Porosity, Microstructure Evolution, and Recoater Crash
使用图论对激光粉末床熔融进行部分尺度热模拟:热历史对孔隙率、微观结构演变和涂布机崩溃的影响
- DOI:10.1016/j.matdes.2021.109685
- 发表时间:2021-03
- 期刊:
- 影响因子:8.4
- 作者:Yavari, Reza;Smoqi, Ziyad;Riensche, Ale;Bevans, Ben;Kobir, Humaun;Mendoza, Heimdall;Song, Hyeyun;Cole, Kevin;Rao, Prahalada
- 通讯作者:Rao, Prahalada
Thermal modeling in metal additive manufacturing using graph theory – Application to laser powder bed fusion of a large volume impeller
使用图论进行金属增材制造中的热建模 — 在大体积叶轮的激光粉末床融合中的应用
- DOI:10.1016/j.addma.2021.101956
- 发表时间:2021-05
- 期刊:
- 影响因子:11
- 作者:Yavari, Reza;Williams, Richard;Riensche, Ale;Hooper, Paul A.;Cole, Kevin D.;Jacquemetton, Lars;Halliday, Harold;Rao, Prahalada Krishna
- 通讯作者:Rao, Prahalada Krishna
Thermal modeling of directed energy deposition additive manufacturing using graph theory
使用图论进行定向能量沉积增材制造的热建模
- DOI:10.1108/rpj-07-2021-0184
- 发表时间:2022-08
- 期刊:
- 影响因子:3.9
- 作者:Riensche, Ale;Severson, Jordan;Yavari, Reza;Piercy, Nicholas L.;Cole, Kevin D.;Rao, Prahalada
- 通讯作者:Rao, Prahalada
Feedforward control of thermal history in laser powder bed fusion: Toward physics-based optimization of processing parameters
激光粉末床熔合热历史的前馈控制:基于物理的加工参数优化
- DOI:10.1016/j.matdes.2022.111351
- 发表时间:2022-12
- 期刊:
- 影响因子:8.4
- 作者:Riensche, Ale;Bevans, Benjamin D.;Smoqi, Ziyad;Yavari, Reza;Krishnan, Ajay;Gilligan, Josie;Piercy, Nicholas;Cole, Kevin;Rao, Prahalada
- 通讯作者:Rao, Prahalada
Prediction of recoater crash in laser powder bed fusion additive manufacturing using graph theory thermomechanical modeling
使用图论热机械建模预测激光粉末床熔融增材制造中的重涂机碰撞
- DOI:10.1007/s40964-022-00331-5
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Kobir, Md. Humaun;Yavari, Reza;Riensche, Alexander R.;Bevans, Benjamin D.;Castro, Leandro;Cole, Kevin D.;Rao, Prahalada
- 通讯作者:Rao, Prahalada
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prahalada Rao其他文献
Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing
深度神经算子支持增材制造数字孪生建模
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ning Liu;Xuxiao Li;M. Rajanna;E. Reutzel;Brady A Sawyer;Prahalada Rao;Jim Lua;Nam Phan;Yue Yu - 通讯作者:
Yue Yu
Generating synthetic as-built additive manufacturing surface topography using progressive growing generative adversarial networks
使用渐进式增长的生成对抗网络生成合成的增材制造表面形貌
- DOI:
10.1007/s40544-023-0826-7 - 发表时间:
2023-12-04 - 期刊:
- 影响因子:6.8
- 作者:
Junhyeon Seo;Prahalada Rao;B. Raeymaekers - 通讯作者:
B. Raeymaekers
Predicting meltpool depth and primary dendritic arm spacing in laser powder bed fusion using physics-based machine learning
使用基于物理的机器学习预测激光粉末床熔合中的熔池深度和初级枝晶臂间距
- DOI:
10.1016/j.matdes.2023.112540 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:0
- 作者:
A. Riensche;Ben Bevans;Grant King;Ajay Krishnan;Kevin D. Cole;Prahalada Rao - 通讯作者:
Prahalada Rao
Effect of processing parameters and thermal history on microstructure evolution and functional properties in laser powder bed fusion of 316L
加工参数和热历史对 316L 激光粉末床熔合微观结构演变和功能性能的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kaustubh Deshmukh;A. Riensche;Ben Bevans;Ryan J. Lane;Kyle Snyder;H. Halliday;Christopher B. Williams;Reza Mirzaeifar;Prahalada Rao - 通讯作者:
Prahalada Rao
Stochastic Modeling and Analysis of Spindle Power During Hard Milling With a Focus on Tool Wear
以刀具磨损为重点的硬铣削过程中主轴功率的随机建模和分析
- DOI:
10.1115/1.4040728 - 发表时间:
2018-08-31 - 期刊:
- 影响因子:0
- 作者:
Xingtao Wang;Robert E. Williams;M. Sealy;Prahalada Rao;Yuebin B. Guo - 通讯作者:
Yuebin B. Guo
Prahalada Rao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prahalada Rao', 18)}}的其他基金
PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
- 批准号:
2322322 - 财政年份:2023
- 资助金额:
$ 14.86万 - 项目类别:
Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
- 批准号:
2309483 - 财政年份:2022
- 资助金额:
$ 14.86万 - 项目类别:
Standard Grant
PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
- 批准号:
2044710 - 财政年份:2021
- 资助金额:
$ 14.86万 - 项目类别:
Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
- 批准号:
1752069 - 财政年份:2018
- 资助金额:
$ 14.86万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Cyber-Enabled Online Quality Assurance for Scalable Additive Bio-Manufacturing
CPS:媒介:协作研究:可扩展增材生物制造的网络在线质量保证
- 批准号:
1739696 - 财政年份:2017
- 资助金额:
$ 14.86万 - 项目类别:
Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
- 批准号:
1719388 - 财政年份:2016
- 资助金额:
$ 14.86万 - 项目类别:
Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
- 批准号:
1538059 - 财政年份:2015
- 资助金额:
$ 14.86万 - 项目类别:
Standard Grant
相似国自然基金
面向小样本教育场景的学生知识追踪方法研究
- 批准号:62307006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多精度目标追踪的多模态统一模型
- 批准号:62302328
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三维黏弹性TTI介质中地震射线追踪及走时成像方法研究
- 批准号:42304060
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单像素探测的高速运动目标追踪与成像技术研究
- 批准号:62305144
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前额叶及其脑网络在儿童共情发展中的作用:计算建模与追踪研究
- 批准号:32371103
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
- 批准号:
2326788 - 财政年份:2024
- 资助金额:
$ 14.86万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 14.86万 - 项目类别:
Standard Grant
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
- 批准号:
2326788 - 财政年份:2024
- 资助金额:
$ 14.86万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 14.86万 - 项目类别:
Standard Grant
RII Track-4:NSF:Understanding the Fundamental Physics of Acousto-Magnetic Microswimmers to Realize Precise, Tunable Motion at Microscales
RII Track-4:NSF:了解声磁微型游泳器的基础物理学,以实现微尺度的精确、可调运动
- 批准号:
2229636 - 财政年份:2023
- 资助金额:
$ 14.86万 - 项目类别:
Standard Grant