US-Ireland Joint R&D Partnership: Strained Engineered Germanium Quantum-Well Laser on GaAs and Si for Optical Coherence Tomography
美国-爱尔兰联合R
基本信息
- 批准号:2042079
- 负责人:
- 金额:$ 39.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optical-coherence-tomography (OCT) is a powerful technique with a wide range of applications, from imaging live tissue to non-destructive industrial testing. Coherent light sources for OCT in the short wave infra-red (SWIR) wavelength can achieve much higher resolution with wider bandwidth and penetration in opaque living tissue, such as, brain and lung tissues. However, there is a lack of SWIR sources with the combined intensity and bandwidth to further enhance the OCT performance. The continued development of affordable and compact coherent light sources in this spectral range is important in many areas of modern technology. The combination of different semiconducting materials and light source architectures offers new paths for highly efficient SWIR sources at reduced cost. The central thrust of the proposed collaborative research is to investigate the design of germanium (Ge) based coherent light sources, with heterogeneous integration of InGaAs/Ge/InGaAs quantum-well structures on GaAs and large area, cost-effective Si substrates. Our objective is to develop tunable SWIR light sources capable of significantly higher penetration depth, image contrast and resolution than available from existing light sources, which will benefit a wide range of important medical, industrial and consumer applications.To demonstrate the viability of the proposed approach, several key technical and scientific challenges must be addressed, including: (i) design and numerical simulation of the proposed strained ε-Ge-based quantum-well (QW) device architectures; (ii) materials synthesis and analysis of InGaAs/ε-Ge/InGaAs QW heterostructures on GaAs and Si using III-V strain template for modified bandgap of Ge; (iii) fabrication and demonstration of ε-Ge QW coherent light sources in wavelength ranges from 1.7 μm to 2.5 μm on GaAs; and (iv) implementation of an integration scheme on large area, cost-effective Si substrates. An international partnership of scientific groups from USA, Ireland and Norther Ireland brings together a synergistic mix of expertise and specialized facilities in materials science, semiconductor fabrication, test and simulation. To address (ii), (iii), and (iv), the proposed research will utilize the state-of-the-art in-house epitaxial growth (interconnected group-IV and III-V molecular beam epitaxy chambers), collaborative materials characterization and simulation (e.g., high-resolution x-ray diffraction, transmission electron microscopy, photoluminescence spectroscopy, deep level transient spectroscopy, and electronic band structure simulation), and in-house/partner fabrication facilities. To address (i), a combination of numerical simulations and electronic structure theory will be leveraged to develop experimentally-calibrated InGaAs/ε-Ge/InGaAs QW device models necessary for broadband light emission in SWIR range. By investigating these topics, this research will elucidate numerous as-of-yet unexplored avenues of fundamental research, including: (a) the amount of strain and doping density in Ge to optical gain and emission wavelength; (b) the role of Ge layer thickness as a function of strain to optical gain; (c) the reduction of current density arising from non-radiative recombination; (d) the threshold current density with amount of strain in Ge; and (e) the realization of device-quality epitaxial Ge QW heterostructures on Si through minimization of dislocations and anti-phase domains in in-situ III-V buffer architectures on Si. Through a comprehensive examination and understanding of the above challenges, this research will establish a pathway to achieving new high performance coherent light sources in the little explored SWIR spectral range that will benefit society as well as industry via medical imaging and non-destructive testing. Furthermore, this international scientific partnership allows for a comprehensive project that trains and mentors students in the field of photonics and nanotechnology through exchange programs. The outcomes of the proposed research results will be disseminated to public through National Science Foundation and lay a foundation for continued and growing US-Ireland collaboration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光学相干断层扫描 (OCT) 是一种功能强大的技术,具有广泛的应用范围,从活体组织成像到无损工业测试,短波红外 (SWIR) 波长的 OCT 相干光源可以实现更高的目标。在不透明的活体组织(例如脑和肺组织)中具有更宽的带宽和穿透力的分辨率然而,缺乏具有组合强度和带宽的短波红外光源来进一步提高 OCT 性能。来源该光谱范围在现代技术的许多领域都很重要,不同半导体材料和光源架构的结合为以更低的成本实现高效短波红外光源提供了新的途径。 (Ge) 基相干光源,在 GaAs 和大面积、经济高效的 Si 衬底上异质集成 InGaAs/Ge/InGaAs 量子阱结构。我们的目标是开发能够显着提高的可调谐 SWIR 光源。穿透深度、图像对比度和分辨率优于现有光源,这将有利于广泛的重要医疗、工业和消费应用。为了证明所提出方法的可行性,必须解决几个关键的技术和科学挑战,包括: (i) 所提出的应变 ε-Ge 量子阱 (QW) 器件架构的设计和数值模拟;(ii) 使用 III-V 族材料合成和分析 GaAs 和 Si 上的 InGaAs/ε-Ge/InGaAs QW 异质结构用于修饰的应变模板Ge 的带隙;(iii) 在 GaAs 上制造和演示波长范围为 1.7 μm 至 2.5 μm 的 ε-Ge QW 相干光源;以及 (iv) 在大面积、经济高效的 Si 衬底上实施集成方案。来自美国、爱尔兰和北爱尔兰的科学团体的国际合作汇集了材料科学、半导体制造、测试和模拟方面的专业知识和专业设施的协同组合,以解决 (ii)、(iii) 和模拟问题。 (iv),拟议的研究将利用最先进的内部外延生长(互连的 IV 族和 III-V 族分子束外延室)、协作材料表征和模拟(例如,高分辨率 x-射线衍射、透射电子显微镜、光致发光光谱、深能级瞬态光谱和电子能带结构模拟)以及内部/合作伙伴制造设施的组合。将利用模拟和电子结构理论来开发短波红外范围内宽带光发射所需的实验校准的 InGaAs/ε-Ge/InGaAs QW 器件模型。通过研究这些主题,本研究将阐明许多尚未探索的途径。基础研究,包括:(a) Ge 中的应变量和掺杂密度对光学增益和发射波长的影响;(b) Ge 层厚度作为应变对光学增益的函数;非辐射复合引起的电流密度降低;(d) 阈值电流密度随 Ge 应变大小的变化;以及 (e) 通过最小化位错和反相域,在 Si 上实现器件质量的外延 Ge QW 异质结构通过对上述挑战的全面检查和理解,这项研究将建立一条在很少探索的短波红外光谱范围内实现新型高性能相干光源的途径,这也将造福社会。作为此外,这一国际科学合作伙伴关系还允许开展一个综合项目,通过交流计划对光子学和纳米技术领域的学生进行培训和指导。拟议的研究成果将通过以下方式向公众传播。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multivalley Electron Conduction at the Indirect-Direct Crossover Point in Highly Tensile-Strained Germanium
高拉伸应变锗中间接-直接交叉点的多谷电子传导
- DOI:10.1103/physrevapplied.18.064083
- 发表时间:2022-12
- 期刊:
- 影响因子:4.6
- 作者:Clavel, M.B.;Murphy;Xie, Y.;Henry, K.T.;Kuhn, M.;Bodnar, R.J.;Khodaparast, G.A.;Smirnov, D.;Heremans, J.J.;Hudait, M.K.
- 通讯作者:Hudait, M.K.
Temperature and doping-dependent interplay between the direct and indirect optical response in buffer-mediated epitaxial germanium
缓冲介导的外延锗中直接和间接光学响应之间的温度和掺杂依赖性相互作用
- DOI:
- 发表时间:2022-06
- 期刊:
- 影响因子:3.9
- 作者:Mantu K. Hudait; Michael Meeker
- 通讯作者:Michael Meeker
Lattice matched GeSn/InAlAs heterostructure: role of Sn in energy band alignment, atomic layer diffusion and photoluminescence
晶格匹配 GeSn/InAlAs 异质结构:Sn 在能带排列、原子层扩散和光致发光中的作用
- DOI:10.1039/d3tc01018j
- 发表时间:2024-09-14
- 期刊:
- 影响因子:6.4
- 作者:S. Karthikeyan;Rutwik Joshi;Jing Zhao;R. Bodnar;B. Magill;Yannick Pleimling;G. Khodaparast;M. Hudait
- 通讯作者:M. Hudait
Interplay Between Strain and Thickness on the Effective Carrier Lifetime of Buffer-Mediated Epitaxial Germanium Probed by the Photoconductance Decay Technique
通过光电导衰减技术探测缓冲介导的外延锗的有效载流子寿命的应变和厚度之间的相互作用
- DOI:10.1021/acsaelm.3c00256
- 发表时间:2023-06
- 期刊:
- 影响因子:4.7
- 作者:Bhattacharya, Shuvodip;Johnston, Steven W.;Datta, Suman;Hudait, Mantu K.
- 通讯作者:Hudait, Mantu K.
Mapping the Interfacial Electronic Structure of Strain-Engineered Epitaxial Germanium Grown on In x Al 1–x As Stressors
绘制在 In x Al 1–x 作为应力源上生长的应变工程外延锗的界面电子结构
- DOI:10.1021/acsomega.1c06203
- 发表时间:2022-02
- 期刊:
- 影响因子:4.1
- 作者:Clavel, Michael B.;Liu, Jheng;Bodnar, Robert J.;Hudait, Mantu K.
- 通讯作者:Hudait, Mantu K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mantu Hudait其他文献
Mantu Hudait的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mantu Hudait', 18)}}的其他基金
Collaborative Research: Planning Grant: I/UCRC for Next Generation Nanomaterial and Device Engineering (NGeNE)
合作研究:规划资助:I/UCRC 下一代纳米材料和器件工程 (NGeNE)
- 批准号:
1464646 - 财政年份:2015
- 资助金额:
$ 39.08万 - 项目类别:
Standard Grant
US-Ireland R&D Partnership: Si-compatible, Strain Engineered Staggered Gap Ge(Sn)/InxGa1-xAs Nanoscale Tunnel Field Effect Transistors
美国-爱尔兰 R
- 批准号:
1507950 - 财政年份:2015
- 资助金额:
$ 39.08万 - 项目类别:
Standard Grant
EAGER: Silicon-compatible, Crystallographic Oriented Epitaxial Germanium for New Generation of Metal-oxide Semiconductor Field-effect Transistors
EAGER:用于新一代金属氧化物半导体场效应晶体管的硅兼容、晶体取向外延锗
- 批准号:
1348653 - 财政年份:2013
- 资助金额:
$ 39.08万 - 项目类别:
Standard Grant
Collaborative: Mixed Anion and Cation Based Transistor Architecture for Ultra-Low Power Complementary Logic Applications
协作:用于超低功耗互补逻辑应用的混合阴离子和阳离子晶体管架构
- 批准号:
1028494 - 财政年份:2010
- 资助金额:
$ 39.08万 - 项目类别:
Standard Grant
相似国自然基金
关于不对称去芳香化反应/Ireland-Claisen重排反应的研究:构筑手性吲哚啉衍生物
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:
相似海外基金
Novel contrast agent tool for musculoskeletal injection procedures
用于肌肉骨骼注射程序的新型造影剂工具
- 批准号:
10483672 - 财政年份:2022
- 资助金额:
$ 39.08万 - 项目类别:
Proposal for Joint US-Ireland Workshop on Nanotechnology
美国-爱尔兰纳米技术联合研讨会提案
- 批准号:
0650541 - 财政年份:2006
- 资助金额:
$ 39.08万 - 项目类别:
Standard Grant
REU in Functional Genomics and Cell Biology
REU 在功能基因组学和细胞生物学中的应用
- 批准号:
7226706 - 财政年份:2005
- 资助金额:
$ 39.08万 - 项目类别:
Short Course: Integrative and Organ Systems Pharmacology
短期课程:综合和器官系统药理学
- 批准号:
7232109 - 财政年份:2005
- 资助金额:
$ 39.08万 - 项目类别:
Minority Summer Research Training Program (MSRTP)
少数族裔暑期研究培训计划(MSRTP)
- 批准号:
7236028 - 财政年份:1993
- 资助金额:
$ 39.08万 - 项目类别: