US-Ireland R&D Partnership: Si-compatible, Strain Engineered Staggered Gap Ge(Sn)/InxGa1-xAs Nanoscale Tunnel Field Effect Transistors

美国-爱尔兰 R

基本信息

项目摘要

The aggressive down-scaling of silicon (Si)-based transistor technology over the past five decades has resulted in an exponential increase in computing power due to the corresponding up-scaling of logic device densities and operational speeds. Moreover, this continued miniaturization has led to the proliferation of affordable, powerful, and compact computing devices that have made Si microelectronics an essential and ubiquitous aspect of modern society. To prolong these trends and address the fundamental technical challenges that have arisen as transistor technology approaches the atomic length scale, research into novel transistor materials and device architectures is paramount. The adoption of new semiconducting materials, e.g., germanium (Ge), germanium-tin (GeSn) and indium gallium arsenide (InGaAs), and transistor architectures, e.g. tunnel field-effect transistors operating on the principle of quantum mechanical tunneling, offer paths to reduce power consumption and increase performance-per-watt in future integrated circuits. However, unlike Si, these novel transistor technologies and materials do not benefit from half-a-century of process maturity. Therefore, the central thrusts of this research are to investigate the materials and optical properties, electrical characteristics, and heterogeneous integration of novel Ge(Sn)/InGaAs tunnel transistors on large area, cost-effective Si substrates. Moreover, the implementation of a monolithic, heterogeneous integration scheme for non-Si materials and devices on Si is a transformative goal that leverages the existing mature process infrastructure for Si with the performance benefits of novel, scalable non-Si transistor technologies. By addressing these technical challenges, this research will benefit a wide range of applications, ranging from industrial, medical, commercial and personal use that require cost-competitive, low-power and high-performance computational devices. Furthermore, this international co-operative interaction between partners allows for a comprehensive project that trains and mentors students through exchange programs, exposure to education and culture in Ireland as well as lay a foundation for continued and growing US-Ireland collaboration. To demonstrate the viability of the proposed approach, several key technical and scientific concerns must be addressed, including: (i) materials synthesis and characterization of Ge(Sn)/InGaAs heterostructures; (ii) numerical simulation of the proposed complimentary Ge(Sn)/InGaAs tunnel transistor device architectures; (iii) development of a process flow for fabricating the n- and p-channel Ge(Sn)/InGaAs tunnel transistors; and (iv) implementation of an integration scheme on Si. To address (i), (iii), and (iv), the proposed research will utilize the state-of-the-art in-house epitaxial growth (interconnected group-IV and III-V molecular beam epitaxy chambers), collaborative materials characterization and simulation (e.g., high-resolution x-ray diffraction, transmission electron microscopy, photoluminescence spectroscopy, and ab-initio interfacial molecular dynamics and electronic band structure simulation), and in-house nanoelectronics fabrication facilities. To address (ii), a combination of commercial and custom software packages will be leveraged to develop precise, experimentally-calibrated Ge(Sn)/InGaAs device models necessary for large-scale circuit integration feasibility. By investigating these topics, this research will elucidate numerous as-of-yet unexplored avenues of fundamental research, including: (a) the control of heterointerface atomic intermixing between group IV (Ge, GeSn) and III-V (In, Ga, As) species and formation of atomically abrupt tunnel junctions; (b) the role of group-III or group-V surface termination on the electronic, optical and energy band alignment properties; (c) the reduction of effective tunneling barrier heights in Ge(Sn)/InGaAs TFETs and conversion of Ge(Sn) to a direct band-gap material through epitaxial tensile strain engineering and Sn alloy incorporation; (d) the simultaneous chemical and electrical passivation of group-IV and III-V materials; and (e) the realization of device-quality epitaxial heterostructures on Si through minimization of threading dislocations and anti-phase domains in in-situ III-V buffer architectures on Si. Through a comprehensive examination and understanding of the aforementioned issues, this research will offer a path to achieve next-generation, non-Si nanoelectronics that will benefit industry and society via extending technological and computational innovation towards the physical scaling limit.
过去 50 年,硅 (Si) 晶体管技术的尺寸大幅缩小,逻辑器件密度和运行速度相应提高,导致计算能力呈指数级增长。此外,这种持续的小型化导致了价格实惠、功能强大且紧凑的计算设备的激增,使硅微电子成为现代社会必不可少且无处不在的一个方面。为了延续这些趋势并解决随着晶体管技术接近原子长度尺度而出现的基本技术挑战,对新型晶体管材料和器件架构的研究至关重要。采用新型半导体材料,例如锗 (Ge)、锗锡 (GeSn) 和砷化铟镓 (InGaAs),以及晶体管架构,例如隧道场效应晶体管按照量子力学隧道原理工作,为未来集成电路降低功耗和提高每瓦性能提供了途径。然而,与硅不同,这些新型晶体管技术和材料并没有受益于半个世纪的工艺成熟度。因此,本研究的重点是研究大面积、经济高效的 Si 衬底上新型 Ge(Sn)/InGaAs 隧道晶体管的材料和光学特性、电学特性以及异质集成。此外,在硅上实现非硅材料和器件的单片异构集成方案是一个变革性目标,它利用了现有成熟的硅工艺基础设施以及新颖的、可扩展的非硅晶体管技术的性能优势。通过解决这些技术挑战,这项研究将使广泛的应用受益,包括工业、医疗、商业和个人使用,这些应用需要具有成本竞争力、低功耗和高性能的计算设备。此外,合作伙伴之间的这种国际合作互动允许开展一个全面的项目,通过交换项目培训和指导学生,接触爱尔兰的教育和文化,并为持续和不断发展的美国与爱尔兰合作奠定基础。为了证明所提出方法的可行性,必须解决几个关键的技术和科学问题,包括:(i)Ge(Sn)/InGaAs异质结构的材料合成和表征; (ii) 所提出的互补 Ge(Sn)/InGaAs 隧道晶体管器件架构的数值模拟; (iii) 开发用于制造 n 沟道和 p 沟道 Ge(Sn)/InGaAs 隧道晶体管的工艺流程; (iv) 在 Si 上实施集成方案。为了解决 (i)、(iii) 和 (iv),拟议的研究将利用最先进的内部外延生长(互连的 IV 族和 III-V 族分子束外延室)、协作材料表征和模拟(例如,高分辨率 X 射线衍射、透射电子显微镜、光致发光光谱、从头算界面分子动力学和电子能带结构模拟)以及内部纳米电子制造设施。为了解决(ii)问题,将利用商业和定制软件包的组合来开发大规模电路集成可行性所需的精确的、经过实验校准的Ge(Sn)/InGaAs器件模型。通过研究这些主题,本研究将阐明许多尚未探索的基础研究途径,包括:(a) IV 族(Ge、GeSn)和 III-V 族(In、Ga、As)之间异质界面原子混合的控制)原子突变隧道结的种类和形成; (b) III族或V族表面终止对电子、光学和能带排列特性的作用; (c) 通过外延拉伸应变工程和掺入 Sn 合金,降低 Ge(Sn)/InGaAs TFET 中的有效隧道势垒高度,并将 Ge(Sn) 转化为直接带隙材料; (d) IV族和III-V族材料的同时化学和电钝化; (e) 通过最小化 Si 上原位 III-V 缓冲架构中的螺纹位错和反相域,在 Si 上实现器件质量的外延异质结构。通过对上述问题的全面检查和理解,这项研究将为实现下一代非硅纳米电子学提供一条途径,通过将技术和计算创新扩展到物理尺度极限,从而造福工业和社会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mantu Hudait其他文献

Mantu Hudait的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mantu Hudait', 18)}}的其他基金

US-Ireland Joint R&D Partnership: Strained Engineered Germanium Quantum-Well Laser on GaAs and Si for Optical Coherence Tomography
美国-爱尔兰联合R
  • 批准号:
    2042079
  • 财政年份:
    2021
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Next Generation Nanomaterial and Device Engineering (NGeNE)
合作研究:规划资助:I/UCRC 下一代纳米材料和器件工程 (NGeNE)
  • 批准号:
    1464646
  • 财政年份:
    2015
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
EAGER: Silicon-compatible, Crystallographic Oriented Epitaxial Germanium for New Generation of Metal-oxide Semiconductor Field-effect Transistors
EAGER:用于新一代金属氧化物半导体场效应晶体管的硅兼容、晶体取向外延锗
  • 批准号:
    1348653
  • 财政年份:
    2013
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
Collaborative: Mixed Anion and Cation Based Transistor Architecture for Ultra-Low Power Complementary Logic Applications
协作:用于超低功耗互补逻辑应用的混合阴离子和阳离子晶体管架构
  • 批准号:
    1028494
  • 财政年份:
    2010
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant

相似国自然基金

关于不对称去芳香化反应/Ireland-Claisen重排反应的研究:构筑手性吲哚啉衍生物
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:

相似海外基金

Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
  • 批准号:
    2346484
  • 财政年份:
    2023
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
  • 批准号:
    2149480
  • 财政年份:
    2023
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
  • 批准号:
    2149487
  • 财政年份:
    2023
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
US-Ireland R&D Partnership: Ga2O3: Understanding Growth, Interfaces and Defects to enable next generation Electronics (GUIDE)
美国-爱尔兰 R
  • 批准号:
    2154535
  • 财政年份:
    2022
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Standard Grant
LEAP-HI: US-Ireland R&D Partnership: Control Co-Design for Ocean Wave Energy Conversion
LEAP-HI:美国-爱尔兰 R
  • 批准号:
    2152694
  • 财政年份:
    2022
  • 资助金额:
    $ 37.34万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了