III: Medium: Collaborative Research: MUDL: Multidimensional Uncertainty-Aware Deep Learning Framework
III:媒介:协作研究:MUDL:多维不确定性感知深度学习框架
基本信息
- 批准号:2107449
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
People encounter serious hurdles in finding effective decision-making solutions to real world problems because of uncertainty from a lack of information, conflicting information, and/or unsure observations. Critical safety concerns have been consistently highlighted because how to interpret this uncertainty has not been carefully investigated. If the uncertainty is misinterpreted, this can result in unnecessary risk. For example, a self-driving autonomous car can misdetect a human in the road. An artificial intelligence-based medical assistant may misdiagnose cancer as a benign tumor. Further, a phishing email can be detected as a normal email. The consequences of all these misdetections or misclassifications caused by different types of uncertainty adds risk and potential adverse events. Artificial intelligence (AI) researchers have actively explored how to solve various decision-making problems under uncertainty. However, no prior research has looked into how different approaches of studying uncertainty in AI can leverage each other. This project studies how to measure different causes of uncertainty and use them to solve diverse decision-making problems more effectively. This project can help develop trustworthy AI algorithms that can be used in many real world decision-making problems. In addition, this project is highly transdisciplinary so that it can encourage broader, newer, and more diverse approaches. To magnify the impact of this project in research and education, this project leverages multicultural, diversity, and STEM programs for students with diverse backgrounds and under-represented populations. This project also includes seminar talks, workshops, short courses, and/or research projects for high school and community college students. This project aims to develop a suite of deep learning (DL) techniques by considering multiple types of uncertainties caused by different root causes and employ them to maximize the effectiveness of decision-making in the presence of highly intelligent, adversarial attacks. This project makes a synergistic but transformative research effort to study: (1) how different types of uncertainties can be quantified based on belief theory; (2) how the estimates of different types of uncertainties can be considered in DL-based approaches; and (3) how multiple types of uncertainties influence the effectiveness and efficiency of decision-making in high-dimensional, complex problems. This project advances the state-of-the-art research by performing the following: (1) Proposing a scalable, robust unified DL-based framework to effectively infer predictive multidimensional uncertainty caused by heterogeneous root causes in adversarial environments. (2) Dealing with multidimensional uncertainty based on neural networks. (3) Enhancing both decision effectiveness and efficiency by considering multidimensional uncertainty-aware designs. (4) Testing proposed approaches to ensure their robustness in the presence of intelligent adversarial attackers with advanced deception tactics based on both simulation models and visualization tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于信息缺乏、信息冲突和/或不确定的观察带来的不确定性,人们在寻找现实世界问题的有效决策解决方案时遇到严重障碍。 关键的安全问题一直被强调,因为如何解释这种不确定性尚未得到仔细研究。如果不确定性被误解,可能会导致不必要的风险。例如,自动驾驶汽车可能会错误地检测到路上的行人。基于人工智能的医疗助理可能会将癌症误诊为良性肿瘤。 此外,网络钓鱼电子邮件可以被检测为正常电子邮件。 由不同类型的不确定性引起的所有这些错误检测或错误分类的后果增加了风险和潜在的不良事件。 人工智能(AI)研究人员积极探索如何解决不确定性下的各种决策问题。 然而,之前没有研究探讨研究人工智能不确定性的不同方法如何相互利用。 该项目研究如何衡量不确定性的不同原因,并利用它们更有效地解决各种决策问题。 该项目可以帮助开发值得信赖的人工智能算法,可用于许多现实世界的决策问题。此外,该项目具有高度跨学科性,因此可以鼓励更广泛、更新和更多样化的方法。 为了扩大该项目在研究和教育方面的影响,该项目利用多元文化、多样性和 STEM 项目,为具有不同背景和代表性不足的人群的学生提供服务。该项目还包括为高中生和社区学院学生举办研讨会、讲习班、短期课程和/或研究项目。 该项目旨在通过考虑不同根本原因引起的多种类型的不确定性来开发一套深度学习(DL)技术,并利用它们在存在高度智能的对抗性攻击时最大限度地提高决策的有效性。 该项目做出了一项协同但变革性的研究工作,旨在研究:(1)如何基于信念理论量化不同类型的不确定性; (2) 在基于深度学习的方法中如何考虑不同类型不确定性的估计; (3)多种类型的不确定性如何影响高维、复杂问题决策的有效性和效率。该项目通过执行以下操作来推进最先进的研究:(1)提出一个可扩展、强大的基于深度学习的统一框架,以有效推断对抗环境中由异构根本原因引起的预测多维不确定性。 (2)基于神经网络处理多维不确定性。 (3)通过考虑多维不确定性感知设计来提高决策有效性和效率。 (4) 测试所提出的方法,以确保其在面对智能对抗攻击者时具有鲁棒性,并采用基于模拟模型和可视化工具的先进欺骗策略。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势进行评估,被认为值得支持以及更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interactive Web-Based Visual Analysis on Network Traffic Data
基于交互式网络的网络流量数据可视化分析
- DOI:10.3390/info14010016
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Jeong, Dong Hyun;Cho, Jin-Hee;Chen, Feng;Kaplan, Lance;Jøsang, Audun;Ji, Soo-Yeon
- 通讯作者:Ji, Soo-Yeon
A survey on uncertainty reasoning and quantification in belief theory and its application to deep learning
- DOI:10.1016/j.inffus.2023.101987
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Zhen Guo;Zelin Wan;Qisheng Zhang;Xujiang Zhao;Qi Zhang;L. Kaplan;A. Jøsang;Dong-Ho Jeong
- 通讯作者:Zhen Guo;Zelin Wan;Qisheng Zhang;Xujiang Zhao;Qi Zhang;L. Kaplan;A. Jøsang;Dong-Ho Jeong
Multi-Label Temporal Evidential Neural Networks for Early Event Detection
- DOI:10.1109/icassp49357.2023.10096305
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Xujiang Zhao;Xuchao Zhang;Chengli Zhao;Jinny Cho;L. Kaplan;D. Jeong;A. Jøsang;Haifeng Chen;F. Chen
- 通讯作者:Xujiang Zhao;Xuchao Zhang;Chengli Zhao;Jinny Cho;L. Kaplan;D. Jeong;A. Jøsang;Haifeng Chen;F. Chen
Active Learning on Neural Networks through Interactive Generation of Digit Patterns and Visual Representation
- DOI:10.1109/isec57711.2023.10402169
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Dong H. Jeong;Jin-Hee Cho;Feng Chen;A. Jøsang;Soo-Yeon Ji
- 通讯作者:Dong H. Jeong;Jin-Hee Cho;Feng Chen;A. Jøsang;Soo-Yeon Ji
How Out-of-Distribution Data Hurts Semi-Supervised Learning
- DOI:10.1109/icdm54844.2022.00087
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Xujiang Zhao;Killamsetty Krishnateja;Rishabh K. Iyer;Feng Chen
- 通讯作者:Xujiang Zhao;Killamsetty Krishnateja;Rishabh K. Iyer;Feng Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Chen其他文献
Superwettability‐based separation: From oil/water separation to polymer/water separation and bubble/water separation
基于超润湿性的分离:从油/水分离到聚合物/水分离和气泡/水分离
- DOI:
10.1002/nano.202000246 - 发表时间:
2021-02 - 期刊:
- 影响因子:0
- 作者:
Jiale Yong;Qing Yang;Jinglan Huo;Xun Hou;Feng Chen - 通讯作者:
Feng Chen
FBXW7 suppresses HMGB1-mediated innate immune signaling to attenuate hepatic inflammation and insulin resistance in a mouse model of nonalcoholic fatty liver disease.
FBXW7 抑制 HMGB1 介导的先天免疫信号,从而减轻非酒精性脂肪肝小鼠模型中的肝脏炎症和胰岛素抵抗。
- DOI:
10.1186/s10020-019-0099-9 - 发表时间:
2019 - 期刊:
- 影响因子:5.7
- 作者:
Cheng Zhang;Feng Chen;Li Feng;Qun Shan;Gui-Hong Zheng;Yong-Jian Wang;Jun Lu;Shao-Hua Fan;Chun-Hui Sun;Dong-Mei Wu;Meng-Qiu Li;Bin Hu;Qing-Qing Wang;Zifeng Zhang(张子峰);Yuan-Lin Zheng - 通讯作者:
Yuan-Lin Zheng
Numerical simulation of creep settlement for high railway foundations based on the UH model considering time effect
基于考虑时间效应的UH模型的高铁地基蠕变沉降数值模拟
- DOI:
10.3208/jgssp.v08.c02 - 发表时间:
2020-03 - 期刊:
- 影响因子:0
- 作者:
Wei Chen;Naidong Wang;Hongye Yan;Feng Chen;Qianli Zhang - 通讯作者:
Qianli Zhang
Controlled shape deformation of bilayer films with tough adhesion between nanocomposite hydrogels and polymer substrates
纳米复合水凝胶和聚合物基材之间具有强粘附力的双层膜的受控形状变形
- DOI:
10.1039/c8tb01971a - 发表时间:
2018 - 期刊:
- 影响因子:7
- 作者:
Yu Li;Jia Yang;Xianqiang Yu;Xiangbin Sun;Feng Chen;Ziqing Tang;Lin Zhu;Gang Qin;Qiang Chen - 通讯作者:
Qiang Chen
Ranking inter-relationships between clusters
对集群之间的相互关系进行排名
- DOI:
10.1080/00207721003710649 - 发表时间:
2011 - 期刊:
- 影响因子:4.3
- 作者:
Tingting Wang;Feng Chen;Y. Chen - 通讯作者:
Y. Chen
Feng Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng Chen', 18)}}的其他基金
ATD: Sparse and Localized Graph Convolutional Networks for Anomaly Detection and Active Learning
ATD:用于异常检测和主动学习的稀疏和局部图卷积网络
- 批准号:
2220574 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Hardware and Software Support for Memory-Centric Computing Systems
协作研究:SHF:中:以内存为中心的计算系统的硬件和软件支持
- 批准号:
2312509 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
FAI: A novel paradigm for fairness-aware deep learning models on data streams
FAI:数据流上具有公平意识的深度学习模型的新颖范式
- 批准号:
2147375 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A New Direction of Research and Development to Fulfill the Promise of Computational Storage
合作研究:SHF:Medium:实现计算存储承诺的研发新方向
- 批准号:
2210755 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: A novel paradigm for detecting complex anomalous patterns in multi-modal, heterogeneous, and high-dimensional multi-source data sets
III:小型:协作研究:一种检测多模态、异构和高维多源数据集中复杂异常模式的新范式
- 批准号:
1954409 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: SPARK: A Theoretical Framework for Discovering Complex Patterns in Big Attributed Networks
职业:SPARK:发现大属性网络中复杂模式的理论框架
- 批准号:
1954376 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SHF: Small: Redesigning the System Architecture for Ultra-High Density Data Storage
SHF:小型:重新设计超高密度数据存储的系统架构
- 批准号:
1910958 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: SPARK: A Theoretical Framework for Discovering Complex Patterns in Big Attributed Networks
职业:SPARK:发现大属性网络中复杂模式的理论框架
- 批准号:
1750911 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: A novel paradigm for detecting complex anomalous patterns in multi-modal, heterogeneous, and high-dimensional multi-source data sets
III:小型:协作研究:一种检测多模态、异构和高维多源数据集中复杂异常模式的新范式
- 批准号:
1815696 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
XPS: FULL: Collaborative Research: Maximizing the Performance Potential and Reliability of Flash-based Solid State Devices for Future Storage Systems
XPS:完整:协作研究:最大限度地提高未来存储系统基于闪存的固态设备的性能潜力和可靠性
- 批准号:
1629291 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant