CAREER: SPARK: A Theoretical Framework for Discovering Complex Patterns in Big Attributed Networks
职业:SPARK:发现大属性网络中复杂模式的理论框架
基本信息
- 批准号:1750911
- 负责人:
- 金额:$ 53.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in sensing and computing techniques have led to a need for massive quantities of data to be aggregated from heterogeneous information sources in fields such as science, engineering, and business that are naturally modeled in the form of big attributed networks. A big attributed network (BAN) is characterized by a combination of (a) high-dimensional and heterogeneous network topologies and (b) high-dimensional and heterogeneous attribute data. Effective analysis of BAN data relies on simultaneous subgraph mining and feature selection for discovering complex patterns that are interesting or significant. However, as yet little has been done to bridge these two important research areas. The focus of this project is therefore to unify a wide range of complex pattern discovery tasks including, for example, the detection and forecasting of societal events (disasters, civil unrest), anomalous patterns (disease outbreaks, cyberattacks), discriminative subnetworks (cancer diagnosis), knowledge patterns (new knowledge building) and storylines (intelligence analysis), and to resolve the fundamental modeling, algorithmic, and interactive challenges associated with ubiquitous BAN data in today's big data era. This project incorporates the resulting research outcomes into the curricula of interdisciplinary courses on topics such as complex pattern detection in BAN data presented at seminars, tutorials, and workshops, and will include outreach activities such as a big data analytics summer camp for local K-12 education in New York's Capital Region.The research objectives of this project are: (1) the development of a unified, theoretical framework for discovering complex patterns in BAN data in various kinds of tasks; (2) making the inference computationally tractable in extremely large combined spaces composed of vertices, edges, and attributes; and (3) rendering the detected heterogeneous patterns transparent and interpretable and incorporating heterogeneous user feedback into the detection process. The research approach includes the development of: (1) novel principled methods capable of learning complex patterns of interest directly from BAN data; (2) near-linear-time common inference algorithms capable of optimizing a variety of BAN-specific model objectives that are subject to different constraints on subgraph topologies and structured sparsity models; and (3) a computer-interpretable language-based system capable of modeling and interpreting rich user feedback schemes in BAN data. More details can be found at: http://www.cs.albany.edu/~fchen/projects/BAN/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传感和计算技术的最新进展导致需要从科学、工程和商业等领域的异构信息源聚合大量数据,这些数据以大属性网络的形式自然建模。大属性网络(BAN)的特点是(a)高维异构网络拓扑和(b)高维异构属性数据的组合。 BAN 数据的有效分析依赖于同步子图挖掘和特征选择,以发现有趣或重要的复杂模式。然而,迄今为止,在连接这两个重要的研究领域方面还没有采取什么措施。因此,该项目的重点是统一广泛的复杂模式发现任务,包括例如社会事件(灾难、内乱)、异常模式(疾病爆发、网络攻击)、判别子网络(癌症诊断)的检测和预测)、知识模式(新知识构建)和故事情节(情报分析),并解决与无处不在的 BAN 数据相关的基本建模、算法和交互挑战当今的大数据时代。该项目将由此产生的研究成果纳入跨学科课程的课程中,主题包括在研讨会、教程和讲习班上介绍的 BAN 数据中的复杂模式检测等主题,并将包括外展活动,例如针对当地 K-12 的大数据分析夏令营该项目的研究目标是:(1)开发一个统一的理论框架,用于发现各种任务中 BAN 数据中的复杂模式; (2) 在由顶点、边和属性组成的极大组合空间中使推理在计算上易于处理; (3)使检测到的异构模式透明且可解释,并将异构用户反馈纳入检测过程。研究方法包括开发:(1)能够直接从 BAN 数据学习复杂的感兴趣模式的新颖原理方法; (2) 近线性时间通用推理算法,能够优化各种特定于 BAN 的模型目标,这些目标受到子图拓扑和结构化稀疏模型的不同约束; (3) 一个基于计算机可解释语言的系统,能够建模和解释 BAN 数据中丰富的用户反馈方案。更多详细信息,请访问:http://www.cs.albany.edu/~fchen/projects/BAN/。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graph Anomaly Detection Based on Steiner Connectivity and Density
- DOI:10.1109/jproc.2018.2813311
- 发表时间:2018-04
- 期刊:
- 影响因子:20.6
- 作者:Jose Cadena;F. Chen;A. Vullikanti
- 通讯作者:Jose Cadena;F. Chen;A. Vullikanti
RETRIEVE: Coreset Selection for Efficient and Robust Semi-Supervised Learning
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Krishnateja Killamsetty;Xujiang Zhao;F. Chen;Rishabh K. Iyer
- 通讯作者:Krishnateja Killamsetty;Xujiang Zhao;F. Chen;Rishabh K. Iyer
Evading provenance-based ML detectors with adversarial system actions
通过对抗性系统操作规避基于来源的机器学习检测器
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mukherjee, Kunal;Wiedemeier, Joshua;Wang, Tianhao;Wei, James;Chen, Feng;Kim, Muhyun;Kantarcioglu, Murat;Jee, Kangkook
- 通讯作者:Jee, Kangkook
Detecting Media Self-Censorship without Explicit Training Data
在没有显式训练数据的情况下检测媒体自我审查
- DOI:10.1137/1.9781611976236.62
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Tao, Rongrong;Zhou, Baojian;Chen, Feng;Mares, Dvid;Butler, Patrick;Ramakrishnan, Naren;Kennedy, Ryan
- 通讯作者:Kennedy, Ryan
Improvements on Uncertainty Quantification for Node Classification via Distance-Based Regularization
- DOI:10.48550/arxiv.2311.05795
- 发表时间:2023-11
- 期刊:
- 影响因子:0
- 作者:Russell Hart;Linlin Yu;Yifei Lou;Feng Chen
- 通讯作者:Russell Hart;Linlin Yu;Yifei Lou;Feng Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Chen其他文献
Superwettability‐based separation: From oil/water separation to polymer/water separation and bubble/water separation
基于超润湿性的分离:从油/水分离到聚合物/水分离和气泡/水分离
- DOI:
10.1002/nano.202000246 - 发表时间:
2021-02 - 期刊:
- 影响因子:0
- 作者:
Jiale Yong;Qing Yang;Jinglan Huo;Xun Hou;Feng Chen - 通讯作者:
Feng Chen
FBXW7 suppresses HMGB1-mediated innate immune signaling to attenuate hepatic inflammation and insulin resistance in a mouse model of nonalcoholic fatty liver disease.
FBXW7 抑制 HMGB1 介导的先天免疫信号,从而减轻非酒精性脂肪肝小鼠模型中的肝脏炎症和胰岛素抵抗。
- DOI:
10.1186/s10020-019-0099-9 - 发表时间:
2019 - 期刊:
- 影响因子:5.7
- 作者:
Cheng Zhang;Feng Chen;Li Feng;Qun Shan;Gui-Hong Zheng;Yong-Jian Wang;Jun Lu;Shao-Hua Fan;Chun-Hui Sun;Dong-Mei Wu;Meng-Qiu Li;Bin Hu;Qing-Qing Wang;Zifeng Zhang(张子峰);Yuan-Lin Zheng - 通讯作者:
Yuan-Lin Zheng
Numerical simulation of creep settlement for high railway foundations based on the UH model considering time effect
基于考虑时间效应的UH模型的高铁地基蠕变沉降数值模拟
- DOI:
10.3208/jgssp.v08.c02 - 发表时间:
2020-03 - 期刊:
- 影响因子:0
- 作者:
Wei Chen;Naidong Wang;Hongye Yan;Feng Chen;Qianli Zhang - 通讯作者:
Qianli Zhang
Controlled shape deformation of bilayer films with tough adhesion between nanocomposite hydrogels and polymer substrates
纳米复合水凝胶和聚合物基材之间具有强粘附力的双层膜的受控形状变形
- DOI:
10.1039/c8tb01971a - 发表时间:
2018 - 期刊:
- 影响因子:7
- 作者:
Yu Li;Jia Yang;Xianqiang Yu;Xiangbin Sun;Feng Chen;Ziqing Tang;Lin Zhu;Gang Qin;Qiang Chen - 通讯作者:
Qiang Chen
Ranking inter-relationships between clusters
对集群之间的相互关系进行排名
- DOI:
10.1080/00207721003710649 - 发表时间:
2011 - 期刊:
- 影响因子:4.3
- 作者:
Tingting Wang;Feng Chen;Y. Chen - 通讯作者:
Y. Chen
Feng Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng Chen', 18)}}的其他基金
ATD: Sparse and Localized Graph Convolutional Networks for Anomaly Detection and Active Learning
ATD:用于异常检测和主动学习的稀疏和局部图卷积网络
- 批准号:
2220574 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Hardware and Software Support for Memory-Centric Computing Systems
协作研究:SHF:中:以内存为中心的计算系统的硬件和软件支持
- 批准号:
2312509 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Continuing Grant
FAI: A novel paradigm for fairness-aware deep learning models on data streams
FAI:数据流上具有公平意识的深度学习模型的新颖范式
- 批准号:
2147375 - 财政年份:2022
- 资助金额:
$ 53.7万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A New Direction of Research and Development to Fulfill the Promise of Computational Storage
合作研究:SHF:Medium:实现计算存储承诺的研发新方向
- 批准号:
2210755 - 财政年份:2022
- 资助金额:
$ 53.7万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: MUDL: Multidimensional Uncertainty-Aware Deep Learning Framework
III:媒介:协作研究:MUDL:多维不确定性感知深度学习框架
- 批准号:
2107449 - 财政年份:2021
- 资助金额:
$ 53.7万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: A novel paradigm for detecting complex anomalous patterns in multi-modal, heterogeneous, and high-dimensional multi-source data sets
III:小型:协作研究:一种检测多模态、异构和高维多源数据集中复杂异常模式的新范式
- 批准号:
1954409 - 财政年份:2019
- 资助金额:
$ 53.7万 - 项目类别:
Standard Grant
CAREER: SPARK: A Theoretical Framework for Discovering Complex Patterns in Big Attributed Networks
职业:SPARK:发现大属性网络中复杂模式的理论框架
- 批准号:
1954376 - 财政年份:2019
- 资助金额:
$ 53.7万 - 项目类别:
Continuing Grant
SHF: Small: Redesigning the System Architecture for Ultra-High Density Data Storage
SHF:小型:重新设计超高密度数据存储的系统架构
- 批准号:
1910958 - 财政年份:2019
- 资助金额:
$ 53.7万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: A novel paradigm for detecting complex anomalous patterns in multi-modal, heterogeneous, and high-dimensional multi-source data sets
III:小型:协作研究:一种检测多模态、异构和高维多源数据集中复杂异常模式的新范式
- 批准号:
1815696 - 财政年份:2018
- 资助金额:
$ 53.7万 - 项目类别:
Standard Grant
XPS: FULL: Collaborative Research: Maximizing the Performance Potential and Reliability of Flash-based Solid State Devices for Future Storage Systems
XPS:完整:协作研究:最大限度地提高未来存储系统基于闪存的固态设备的性能潜力和可靠性
- 批准号:
1629291 - 财政年份:2016
- 资助金额:
$ 53.7万 - 项目类别:
Standard Grant
相似国自然基金
复杂曲面精密微小孔多场辅助电火花加工理论与关键技术基础
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
微细电火花加工技术中的精度控制理论及方法
- 批准号:51775316
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
两级电源式海中电火花声源的理论与实验研究
- 批准号:51507179
- 批准年份:2015
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
单隙及多隙虚火花放电击穿机理研究
- 批准号:11347125
- 批准年份:2013
- 资助金额:5.0 万元
- 项目类别:专项基金项目
车载火花放电等离子体重整制氢系统的优化设计理论及方法
- 批准号:21106002
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Igniting Life with Sparks of Light: 3D Spatiotemporal Photoactivation of Angiogenesis via Radiational Kinesis (3D SPARK)
用光的火花点燃生命:通过辐射运动进行血管生成的 3D 时空光激活 (3D SPARK)
- 批准号:
MR/X034976/1 - 财政年份:2024
- 资助金额:
$ 53.7万 - 项目类别:
Fellowship
Soot Coexistence Effect on Hydrocarbon Decomposition and Hydrogen Generation in Spark Discharge Plasma
火花放电等离子体中碳烟共存对碳氢化合物分解和氢气生成的影响
- 批准号:
23K03370 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spark their imagination; power their future
激发他们的想象力;
- 批准号:
10074596 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Collaborative R&D
Field-Assisted Sintering Technology / Spark Plasma Sintering
场辅助烧结技术/火花等离子烧结
- 批准号:
524821847 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Major Research Instrumentation
A study on energy transport during discharge in spark ignition process
火花点火过程放电能量传输研究
- 批准号:
23K03719 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)