III: Small: Collaborative Research: A novel paradigm for detecting complex anomalous patterns in multi-modal, heterogeneous, and high-dimensional multi-source data sets

III:小型:协作研究:一种检测多模态、异构和高维多源数据集中复杂异常模式的新范式

基本信息

  • 批准号:
    1954409
  • 负责人:
  • 金额:
    $ 20.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

One of the greatest challenges in modern data analysis is to identify subtle, complex anomalous patterns (subsets of a data set that are novel or unexpected) within ubiquitous multi-modal, heterogeneous, and high-dimensional multi-source data sets in the current big data era. The detection of such salient patterns is an indispensable tool for knowledge mining and discovery in important applications across many fields of science, engineering, and business, including the early detection of infectious disease outbreaks, crime hotspots, network intrusions, false advertising, cyber botnets, customer activity monitoring and user profiling, and fraudulent medical claims, among others. The project research goal is to develop a new and innovative paradigm for discovering complex and subtle anomalous patterns in ubiquitous multi-modal, heterogeneous, and high-dimensional multi-source datasets in the current big data era. The key idea is to generalize the idea of meta-analysis from the statistical community and to reframe the problem as a search over all subsets of nonparametric statistical tests that are conducted on individual record-level features, in order to find the subsets (anomalous patterns) that are jointly significant. The project is focused on real-world problems related to biosurveillance and cybersecurity with two challenging applications: early detection of rare and infectious disease outbreaks (e.g., foodborne, Hantavirus, yellow fever) and Sybil attacks (e.g., spammers, fake users, and compromised normal users). The integrated education plan includes the development of new courses offered at the Master of Science program in Computer Science and Informatics and outreach to underrepresented groups. The outcomes of this project will be widely disseminated to broader audience via tutorials and workshops.The research objectives of this project are: (1) the development of nonparametric tests for modeling anomalous information of multi-source datasets; (2) learning heterogeneous dependencies among nonparametric tests; (3) detecting anomalous patterns from an extremely large set of nonparametric tests; and (4) making the detected anomalous patterns interpretable in the context of multi-modal, heterogeneous, and high-dimensional data. The research approach includes the development of (1) nonparametric tests on individual record level features that provide consistent representations of anomalous information from multiple heterogeneous input modalities, such as image, text, video, and multiple sensor streams; (2) deep structured and adversarial methods capable of learning robust hierarchical dependency structures of nonparametric tests using unlabeled training data; (3) fast, scalable combinatorial optimization methods capable of accurately detecting salient anomalous patterns from billion-size nonparametric tests; and (4) transparent and interpretable methods capable of explaining the predicted anomalous patterns by identifying training instances and features that are most responsible for the predictions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代数据分析中最大的挑战之一是在当前大数据时代无处不在的多模式,异质和高维多源数据集中确定微妙的,复杂的异常模式(新颖或意外的数据集的子集(新颖或意外的数据集)。检测这种显着模式是在许多科学,工程和业务领域的重要应用中知识挖掘和发现的必不可少的工具,包括早期发现传染病爆发,犯罪点,网络入侵,虚假广告,网络僵尸网络,网络僵尸网络,客户活动监测以及用户分析以及欺诈性的医学要求等。项目研究目标是开发一种新的创新范式,以发现无处不在的多模式,异质和高维多源数据集中的复杂而微妙的异常模式。关键思想是概括从统计界的荟萃分析的概念,并将问题重新构架为对所有记录级特征进行的非参数统计测试的搜索,以便找到共同重要的子集(异常模式)。该项目的重点是与生物监测和网络安全有关的现实问题,并具有两个具有挑战性的应用:早期发现罕见和传染病暴发(例如,食源性疾病,hantavirus,hantavirus,黄热病)和Sybil攻击(例如,垃圾邮件发送者,垃圾邮件发送者,假用户和正常使用者)。综合教育计划包括开发计算机科学和信息学硕士课程提供的新课程,并向代表性不足的群体开发。该项目的结果将通过教程和讲习班广泛传播给更广泛的受众。该项目的研究目标是:(1)开发非参数测试,用于建模多源数据集的异常信息; (2)在非参数测试中学习异质依赖性; (3)从一组极大的非参数测试中检测异常模式; (4)使检测到的异常模式在多模式,异质和高维数据的背景下进行解释。研究方法包括开发(1)对单个记录水平特征的非参数测试,这些特征提供了来自多种异构输入模式的异常信息的一致表示,例如图像,文本,视频和多个传感器流; (2)使用未标记的训练数据学习非参数测试的鲁棒层次依赖性结构的深层结构和对抗方法; (3)能够准确地检测出数十亿个非参数测试的快速,可扩展组合优化方法; (4)能够通过识别最负责预测的培训实例和特征来解释预测异常模式的透明和可解释的方法。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来进行评估的。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Primal-Dual Subgradient Approach for Fair Meta Learning
Block-Structured Optimization for Anomalous Pattern Detection in Interdependent Networks
Distributionally Robust Optimization for Deep Kernel Multiple Instance Learning
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hitesh Sapkota;Yiming Ying;F. Chen;Qi Yu
  • 通讯作者:
    Hitesh Sapkota;Yiming Ying;F. Chen;Qi Yu
Calibrated Nonparametric Scan Statistics for Anomalous Pattern Detection in Graphs
用于图形中异常模式检测的校准非参数扫描统计
Fairness-Aware Online Meta-learning
公平意识在线元学习
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng Chen其他文献

Application of orthogonal fringe patterns in uniaxial microscopic 3D profilometry
正交条纹图案在单轴显微3D轮廓测量中的应用
  • DOI:
    10.1364/osac.409510
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Min Zhong;Ke Cheng;Feng Chen;Peng Duan;Min Li
  • 通讯作者:
    Min Li
A Formal Model Driven Approach to Dependable Software Evolution
可靠软件演化的形式化模型驱动方法
Parametric Analysis of the Drainage Performance of Porous Asphalt Pavement Based on a 3D FEM Method
基于3D有限元方法的多孔沥青路面排水性能参数分析
  • DOI:
    10.1061/(asce)mt.1943-5533.0003468
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianjian Ji;Lei Xiao;Feng Chen
  • 通讯作者:
    Feng Chen
Computerized analysis of tongue sub-lingual veins to detect lung and breast cancers
计算机分析舌下静脉以检测肺癌和乳腺癌
Psychometric Evaluation of the Spiritual Perspective Scale in Palliative Care Nurses in China
中国姑息治疗护士精神视角量表的心理测量评估
  • DOI:
    10.1007/s10943-022-01582-w
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Feng Chen;Yi Zhang;Lingjun Zhou;Jing Cui
  • 通讯作者:
    Jing Cui

Feng Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feng Chen', 18)}}的其他基金

ATD: Sparse and Localized Graph Convolutional Networks for Anomaly Detection and Active Learning
ATD:用于异常检测和主动学习的稀疏和局部图卷积网络
  • 批准号:
    2220574
  • 财政年份:
    2023
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Hardware and Software Support for Memory-Centric Computing Systems
协作研究:SHF:中:以内存为中心的计算系统的硬件和软件支持
  • 批准号:
    2312509
  • 财政年份:
    2023
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Continuing Grant
FAI: A novel paradigm for fairness-aware deep learning models on data streams
FAI:数据流上具有公平意识的深度学习模型的新颖范式
  • 批准号:
    2147375
  • 财政年份:
    2022
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: A New Direction of Research and Development to Fulfill the Promise of Computational Storage
合作研究:SHF:Medium:实现计算存储承诺的研发新方向
  • 批准号:
    2210755
  • 财政年份:
    2022
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: MUDL: Multidimensional Uncertainty-Aware Deep Learning Framework
III:媒介:协作研究:MUDL:多维不确定性感知深度学习框架
  • 批准号:
    2107449
  • 财政年份:
    2021
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Continuing Grant
CAREER: SPARK: A Theoretical Framework for Discovering Complex Patterns in Big Attributed Networks
职业:SPARK:发现大属性网络中复杂模式的理论框架
  • 批准号:
    1954376
  • 财政年份:
    2019
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Continuing Grant
SHF: Small: Redesigning the System Architecture for Ultra-High Density Data Storage
SHF:小型:重新设计超高密度数据存储的系统架构
  • 批准号:
    1910958
  • 财政年份:
    2019
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
CAREER: SPARK: A Theoretical Framework for Discovering Complex Patterns in Big Attributed Networks
职业:SPARK:发现大属性网络中复杂模式的理论框架
  • 批准号:
    1750911
  • 财政年份:
    2018
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: A novel paradigm for detecting complex anomalous patterns in multi-modal, heterogeneous, and high-dimensional multi-source data sets
III:小型:协作研究:一种检测多模态、异构和高维多源数据集中复杂异常模式的新范式
  • 批准号:
    1815696
  • 财政年份:
    2018
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: Maximizing the Performance Potential and Reliability of Flash-based Solid State Devices for Future Storage Systems
XPS:完整:协作研究:最大限度地提高未来存储系统基于闪存的固态设备的性能潜力和可靠性
  • 批准号:
    1629291
  • 财政年份:
    2016
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant

相似国自然基金

基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
  • 批准号:
    61661005
  • 批准年份:
    2016
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
  • 批准号:
    61301143
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
  • 批准号:
    81072465
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于小世界网络的传感器网络研究
  • 批准号:
    60472059
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336769
  • 财政年份:
    2024
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336768
  • 财政年份:
    2024
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
  • 批准号:
    2311990
  • 财政年份:
    2023
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了