III: Small: Collaborative Research: A novel paradigm for detecting complex anomalous patterns in multi-modal, heterogeneous, and high-dimensional multi-source data sets
III:小型:协作研究:一种检测多模态、异构和高维多源数据集中复杂异常模式的新范式
基本信息
- 批准号:1954409
- 负责人:
- 金额:$ 20.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the greatest challenges in modern data analysis is to identify subtle, complex anomalous patterns (subsets of a data set that are novel or unexpected) within ubiquitous multi-modal, heterogeneous, and high-dimensional multi-source data sets in the current big data era. The detection of such salient patterns is an indispensable tool for knowledge mining and discovery in important applications across many fields of science, engineering, and business, including the early detection of infectious disease outbreaks, crime hotspots, network intrusions, false advertising, cyber botnets, customer activity monitoring and user profiling, and fraudulent medical claims, among others. The project research goal is to develop a new and innovative paradigm for discovering complex and subtle anomalous patterns in ubiquitous multi-modal, heterogeneous, and high-dimensional multi-source datasets in the current big data era. The key idea is to generalize the idea of meta-analysis from the statistical community and to reframe the problem as a search over all subsets of nonparametric statistical tests that are conducted on individual record-level features, in order to find the subsets (anomalous patterns) that are jointly significant. The project is focused on real-world problems related to biosurveillance and cybersecurity with two challenging applications: early detection of rare and infectious disease outbreaks (e.g., foodborne, Hantavirus, yellow fever) and Sybil attacks (e.g., spammers, fake users, and compromised normal users). The integrated education plan includes the development of new courses offered at the Master of Science program in Computer Science and Informatics and outreach to underrepresented groups. The outcomes of this project will be widely disseminated to broader audience via tutorials and workshops.The research objectives of this project are: (1) the development of nonparametric tests for modeling anomalous information of multi-source datasets; (2) learning heterogeneous dependencies among nonparametric tests; (3) detecting anomalous patterns from an extremely large set of nonparametric tests; and (4) making the detected anomalous patterns interpretable in the context of multi-modal, heterogeneous, and high-dimensional data. The research approach includes the development of (1) nonparametric tests on individual record level features that provide consistent representations of anomalous information from multiple heterogeneous input modalities, such as image, text, video, and multiple sensor streams; (2) deep structured and adversarial methods capable of learning robust hierarchical dependency structures of nonparametric tests using unlabeled training data; (3) fast, scalable combinatorial optimization methods capable of accurately detecting salient anomalous patterns from billion-size nonparametric tests; and (4) transparent and interpretable methods capable of explaining the predicted anomalous patterns by identifying training instances and features that are most responsible for the predictions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代数据分析面临的最大挑战之一是在当前大数据中普遍存在的多模态、异构和高维多源数据集中识别微妙、复杂的异常模式(新颖或意外的数据集子集)。数据时代。对此类显着模式的检测是科学、工程和商业许多领域重要应用中知识挖掘和发现不可或缺的工具,包括早期发现传染病爆发、犯罪热点、网络入侵、虚假广告、网络僵尸网络、客户活动监控和用户分析以及欺诈性医疗索赔等。该项目的研究目标是开发一种新的创新范式,用于发现当前大数据时代普遍存在的多模态、异构、高维多源数据集中复杂而微妙的异常模式。关键思想是概括统计界的元分析思想,并将问题重新构建为对对单个记录级特征进行的非参数统计测试的所有子集的搜索,以便找到子集(异常模式) )共同重要。该项目专注于与生物监测和网络安全相关的现实世界问题,具有两个具有挑战性的应用:早期检测罕见和传染病爆发(例如食源性、汉坦病毒、黄热病)和女巫攻击(例如垃圾邮件发送者、虚假用户和受损的病毒)普通用户)。综合教育计划包括开发计算机科学和信息学理学硕士课程提供的新课程,以及向代表性不足的群体进行推广。该项目的成果将通过教程和研讨会向更广泛的受众广泛传播。该项目的研究目标是:(1)开发用于建模多源数据集异常信息的非参数检验; (2)学习非参数检验之间的异构依赖关系; (3) 从大量非参数检验中检测异常模式; (4) 使检测到的异常模式在多模态、异构和高维数据的背景下可以解释。研究方法包括开发(1)对单个记录级特征的非参数测试,这些特征提供来自多种异构输入模式(例如图像、文本、视频和多个传感器流)的异常信息的一致表示; (2)深层结构化和对抗性方法,能够使用未标记的训练数据学习非参数测试的鲁棒分层依赖结构; (3) 快速、可扩展的组合优化方法,能够从数十亿规模的非参数测试中准确检测显着的异常模式; (4) 透明且可解释的方法,能够通过识别对预测最有影响的训练实例和特征来解释预测的异常模式。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和能力进行评估,被认为值得支持。更广泛的影响审查标准。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Block-Structured Optimization for Anomalous Pattern Detection in Interdependent Networks
- DOI:10.1109/icdm.2019.00137
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Fei Jie;Chunpai Wang;Feng Chen;Lei Li;Xindong Wu
- 通讯作者:Fei Jie;Chunpai Wang;Feng Chen;Lei Li;Xindong Wu
A Primal-Dual Subgradient Approach for Fair Meta Learning
- DOI:10.1109/icdm50108.2020.00091
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Chengli Zhao;Feng Chen;Zhuoyi Wang;L. Khan
- 通讯作者:Chengli Zhao;Feng Chen;Zhuoyi Wang;L. Khan
Distributionally Robust Optimization for Deep Kernel Multiple Instance Learning
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Hitesh Sapkota;Yiming Ying;F. Chen;Qi Yu
- 通讯作者:Hitesh Sapkota;Yiming Ying;F. Chen;Qi Yu
Calibrated Nonparametric Scan Statistics for Anomalous Pattern Detection in Graphs
用于图形中异常模式检测的校准非参数扫描统计
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chunpai Wang, Daniel Neill
- 通讯作者:Chunpai Wang, Daniel Neill
Fairness-Aware Online Meta-learning
公平意识在线元学习
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhao, Chen;Chen, Feng;Thuraisingham, Bhavani
- 通讯作者:Thuraisingham, Bhavani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Chen其他文献
When, What and How to Teach about Electric Mobility? An Innovative Teaching Concept for All Stages of Education: Lessons from Poland
何时、什么以及如何教授电动汽车?
- DOI:
10.3390/en14196440 - 发表时间:
2021 - 期刊:
- 影响因子:3.2
- 作者:
K. Turoń;A. Kubik;Feng Chen - 通讯作者:
Feng Chen
Ranking inter-relationships between clusters
对集群之间的相互关系进行排名
- DOI:
10.1080/00207721003710649 - 发表时间:
2011 - 期刊:
- 影响因子:4.3
- 作者:
Tingting Wang;Feng Chen;Y. Chen - 通讯作者:
Y. Chen
Dry/wet variations in the eastern Tien Shan (China) since AD 1725 based on Schrenk spruce (Picea schrenkiana Fisch. et Mey) tree rings
基于雪伦云杉 (Picea schrenkiana Fisch. et Mey) 树轮的自公元 1725 年以来天山东部(中国)的干/湿变化
- DOI:
10.1016/j.dendro.2016.07.003 - 发表时间:
2016-12 - 期刊:
- 影响因子:3
- 作者:
Feng Chen;Huaming Shang;Yujiang Yuan - 通讯作者:
Yujiang Yuan
Controlled shape deformation of bilayer films with tough adhesion between nanocomposite hydrogels and polymer substrates
纳米复合水凝胶和聚合物基材之间具有强粘附力的双层膜的受控形状变形
- DOI:
10.1039/c8tb01971a - 发表时间:
2018 - 期刊:
- 影响因子:7
- 作者:
Yu Li;Jia Yang;Xianqiang Yu;Xiangbin Sun;Feng Chen;Ziqing Tang;Lin Zhu;Gang Qin;Qiang Chen - 通讯作者:
Qiang Chen
Numerical simulation of creep settlement for high railway foundations based on the UH model considering time effect
基于考虑时间效应的UH模型的高铁地基蠕变沉降数值模拟
- DOI:
10.3208/jgssp.v08.c02 - 发表时间:
2020-03 - 期刊:
- 影响因子:0
- 作者:
Wei Chen;Naidong Wang;Hongye Yan;Feng Chen;Qianli Zhang - 通讯作者:
Qianli Zhang
Feng Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng Chen', 18)}}的其他基金
ATD: Sparse and Localized Graph Convolutional Networks for Anomaly Detection and Active Learning
ATD:用于异常检测和主动学习的稀疏和局部图卷积网络
- 批准号:
2220574 - 财政年份:2023
- 资助金额:
$ 20.59万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Hardware and Software Support for Memory-Centric Computing Systems
协作研究:SHF:中:以内存为中心的计算系统的硬件和软件支持
- 批准号:
2312509 - 财政年份:2023
- 资助金额:
$ 20.59万 - 项目类别:
Continuing Grant
FAI: A novel paradigm for fairness-aware deep learning models on data streams
FAI:数据流上具有公平意识的深度学习模型的新颖范式
- 批准号:
2147375 - 财政年份:2022
- 资助金额:
$ 20.59万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A New Direction of Research and Development to Fulfill the Promise of Computational Storage
合作研究:SHF:Medium:实现计算存储承诺的研发新方向
- 批准号:
2210755 - 财政年份:2022
- 资助金额:
$ 20.59万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: MUDL: Multidimensional Uncertainty-Aware Deep Learning Framework
III:媒介:协作研究:MUDL:多维不确定性感知深度学习框架
- 批准号:
2107449 - 财政年份:2021
- 资助金额:
$ 20.59万 - 项目类别:
Continuing Grant
CAREER: SPARK: A Theoretical Framework for Discovering Complex Patterns in Big Attributed Networks
职业:SPARK:发现大属性网络中复杂模式的理论框架
- 批准号:
1954376 - 财政年份:2019
- 资助金额:
$ 20.59万 - 项目类别:
Continuing Grant
SHF: Small: Redesigning the System Architecture for Ultra-High Density Data Storage
SHF:小型:重新设计超高密度数据存储的系统架构
- 批准号:
1910958 - 财政年份:2019
- 资助金额:
$ 20.59万 - 项目类别:
Standard Grant
CAREER: SPARK: A Theoretical Framework for Discovering Complex Patterns in Big Attributed Networks
职业:SPARK:发现大属性网络中复杂模式的理论框架
- 批准号:
1750911 - 财政年份:2018
- 资助金额:
$ 20.59万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: A novel paradigm for detecting complex anomalous patterns in multi-modal, heterogeneous, and high-dimensional multi-source data sets
III:小型:协作研究:一种检测多模态、异构和高维多源数据集中复杂异常模式的新范式
- 批准号:
1815696 - 财政年份:2018
- 资助金额:
$ 20.59万 - 项目类别:
Standard Grant
XPS: FULL: Collaborative Research: Maximizing the Performance Potential and Reliability of Flash-based Solid State Devices for Future Storage Systems
XPS:完整:协作研究:最大限度地提高未来存储系统基于闪存的固态设备的性能潜力和可靠性
- 批准号:
1629291 - 财政年份:2016
- 资助金额:
$ 20.59万 - 项目类别:
Standard Grant
相似国自然基金
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
- 批准号:82372561
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
- 批准号:82373082
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于胆碱能皮层投射纤维探讨脑小血管病在帕金森病步态障碍中的作用及机制研究
- 批准号:82301663
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关于丢番图方程小素数解上界估计的研究
- 批准号:12301005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
嗅球小胶质细胞P2X7受体在变应性鼻炎发生帕金森病样改变中的作用与机制研究
- 批准号:82371119
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 20.59万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 20.59万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 20.59万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 20.59万 - 项目类别:
Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
- 批准号:
2311990 - 财政年份:2023
- 资助金额:
$ 20.59万 - 项目类别:
Standard Grant