III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
基本信息
- 批准号:2348169
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Monitoring of possible hazards and disasters are crucial for mitigating their effects on the physical environment or to humans. The unmanned Aerial Vehicles (UAVs) have been successfully used in surveillance systems, also for many other applications such as monitoring infrastructure, vegetation growth, coastline, traffic, etc. Due to the widespread applications, a higher level of intelligence and autonomy is required to ensure safety and operational efficiency. The emerging high-resolution sensors and deep learning techniques hold great promise for autonomous UAVs. However, the unprecedented scale and complexity of sensing data (such as aerial images) have presented critical computational bottlenecks requiring new concepts and enabling tools. To address these challenges, this project focuses on designing principled large-scale machine learning, edge computing systems, energy efficient algorithms and tools that are used to achieve the real-time prediction, utilize cloud and edge computing resources, advance data-driven model-based approaches, assure the safe and agile collaborative vehicles navigation. These results address the challenges in decision support and data revolution and lead to the next generation collaborative autonomous systems.The research objective of this project is to address the computational challenges in the innovative real-time and intelligent collaborative autonomous vehicles. A novel large-scale machine learning and edge computing framework is developed to integrate the emerging key computational techniques, including fast deep learning optimizations, asynchronous federated learning, cross domain deep learning model compression, hierarchical edge computing, and collaborative autonomous aerial and ground vehicles. Unlike most existing systems that perform big data analysis in central servers or clustering for offline learning, this project provides promising new directions to the real-time analysis of high-throughput sensor data by addressing the critical embedded device data analysis issues including efficiency, scalability, distributed computing, energy saving, and space reduction. The research project combines rigorous theoretical analysis and emerging application studies, and contributes to both academic research and potential commercialized products. Such unique capabilities enable new computational applications in a large number of research areas. It advances and thus extends the relationship between engineering innovation and computational analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
监测可能的危害和灾难对于减轻对物理环境或对人类的影响至关重要。无人驾驶汽车(UAV)已成功地用于监视系统中,也用于许多其他应用,例如监测基础设施,植被增长,海岸线,交通等,由于应用程序广泛,需要更高的智能和自主权来确保安全和操作效率。新兴的高分辨率传感器和深度学习技术对自动无人机具有巨大的希望。但是,感应数据的前所未有的规模和复杂性(例如航空图像)提出了需要新概念和启用工具的关键计算瓶颈。为了应对这些挑战,该项目着重于设计有原则的大规模机器学习,边缘计算系统,能源有效算法和用于实现实时预测的工具,利用云和边缘计算资源,基于数据驱动的模型的方法,确保安全且敏捷的协作车辆导航。这些结果应对决策支持和数据革命的挑战,并导致下一代协作自主系统。该项目的研究目标是应对创新的实时和智能协作自动驾驶汽车的计算挑战。开发了一种新型的大型机器学习和边缘计算框架,以整合新兴的关键计算技术,包括快速深度学习优化,异步联合学习,跨域深层学习模型压缩,层次结构边缘计算以及协作自动驾驶汽车和地面车辆。与大多数在中央服务器中执行大数据分析或用于离线学习的集群的系统不同,该项目通过解决关键的嵌入式设备数据分析问题,包括效率,分布式计算,能源节省和空间降低,为高通量传感器数据实时分析提供了有希望的新方向。研究项目结合了严格的理论分析和新兴的应用研究,并有助于学术研究和潜在的商业化产品。如此独特的功能可以在大量研究领域中进行新的计算应用。它的进步,从而扩展了工程创新与计算分析之间的关系。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评论标准来评估值得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heng Huang其他文献
Perianesthesia Care of the Oncologic Patients Undergoing Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy: A Retrospective Study.
接受热腹腔化疗肿瘤细胞减灭术的肿瘤患者的围麻醉护理:一项回顾性研究。
- DOI:
10.1016/j.jopan.2020.10.016 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Dan Li;Shi Huang;Fei Zhang;R. Ball;Heng Huang - 通讯作者:
Heng Huang
Experimental study on liquid immersion preheating of lithium-ion batteries under low temperature environment
低温环境下锂离子电池液浸预热实验研究
- DOI:
10.1016/j.csite.2024.104759 - 发表时间:
2024 - 期刊:
- 影响因子:6.8
- 作者:
Jiakang Bao;Zhi;Wei;Lei Wei;Jizu Lyu;Yang Li;Heng Huang;Yubai Li;Yongchen Song - 通讯作者:
Yongchen Song
Computational Issues in Biomedical Nanometrics and Nano-Materials
生物医学纳米计量学和纳米材料的计算问题
- DOI:
10.4028/www.scientific.net/jnanor.1.50 - 发表时间:
2007 - 期刊:
- 影响因子:1.7
- 作者:
Heng Huang;Li Shen;J. Ford;Yu Hang Wang;Yu Rong Xu - 通讯作者:
Yu Rong Xu
Research on Virtual Enterprise Workflow Modeling and Management System Implementation
虚拟企业工作流建模及管理系统实现研究
- DOI:
10.1109/wicom.2008.2836 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Dejun Chen;Heng Huang;C. Ji - 通讯作者:
C. Ji
Functional analysis of cardiac MR images using SPHARM modeling
使用 SPHARM 建模对心脏 MR 图像进行功能分析
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Heng Huang;Li Shen;J. Ford;F. Makedon;Rong Zhang;Ling Gao;J. Pearlman - 通讯作者:
J. Pearlman
Heng Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heng Huang', 18)}}的其他基金
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
- 批准号:
2347617 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
- 批准号:
2405416 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
- 批准号:
2347604 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
- 批准号:
2348306 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
- 批准号:
2213701 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
- 批准号:
2225775 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
- 批准号:
2217003 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2211492 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant