SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health

SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架

基本信息

  • 批准号:
    2347604
  • 负责人:
  • 金额:
    $ 118.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

With advances in anesthesia techniques, surgery has become increasingly applicable to a wider range of diseases and patients. Worldwide more than 230 million major surgical procedures are carried out each year. In terms of patient safety and medical economics, an important issue is how to reduce the incidence of postoperative complications and mortality. At least half of postoperative complications can be prevented, while improvements in anesthesia-associated factors contribute greatly to the prevention of complications. Anesthesia information management system is a specialized type of electronic health record that allow the automatic and reliable collection and storage of patient data during the perioperative period. The electronic anesthesia data not only provide a rich data set to assist both anesthesia providers and hospitals with their goals to improve patient safety during the fast-paced intra-operative period, but also capture detailed data to allow end users to access information for management, quality assurance, and research purposes. This project addresses the computational challenges in large-scale electronic anesthesia data mining, develops and validates an automated anesthesia risk prediction and decision support system to identify risk factors and detect patients at risk of postoperative complications and in-hospital mortality. This project develops novel large-scale machine learning framework to integrate the emerging key computational techniques, such as semi-supervised generative adversarial learning, interpretable deep learning, large-scale optimization, and unsupervised hashing, to analyze large-scale electronic anesthesia data for enhancing anesthesia risk stratification and improving the quality of care for precision health. Specifically, the PIs investigate: 1) new computational tools to automate electronic anesthesia data processing, 2) novel semi-supervised generative adversarial network for anesthesia risk stratification, 3) interpretable deep learning model for clinical markers discovery, 4) scale up deep learning models for big data computation via new large-scale optimization algorithms, 5) new unsupervised deep generative adversarial hashing network for fast and accurate clinical case retrieval, and 6) evaluate the proposed methods and system using real large-scale anesthesia data. It is innovative to integrate large-scale machine learning and data-intensive computing for electronic anesthesia data mining that holds great promise for predicting postoperative outcomes using the comprehensive preoperative and intra-operative patient profiles. The developed methods and tools impact other public health research and enable investigators working on electronic health data to effectively test risk prediction hypothesis. This project facilitates the development of novel educational tools to enhance several current courses at University of Pittsburgh.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着麻醉技术的进步,手术已越来越适用于更广泛的疾病和患者。每年在全球范围内进行超过2.3亿个主要手术程序。在患者安全和医学经济学方面,一个重要的问题是如何减少术后并发症和死亡率的发生率。至少可以预防术后并发症的一半,而与麻醉相关因素的改善对预防并发症有很大贡献。麻醉信息管理系统是一种专门的电子健康记录,可在围手术期间自动收集和存储患者数据。电子麻醉数据不仅提供了丰富的数据集,可以帮助麻醉提供者和医院实现其目标,以在快速节奏的术中提高患者安全性,而且还捕获详细的数据,以允许最终用户访问管理,质量保证和研究目的的信息。该项目解决了大规模电子麻醉数据挖掘的计算挑战,开发和验证了自动麻醉风险预测和决策支持系统,以识别风险因素,并检测有术后并发症和医院死亡率风险的患者。该项目开发了新型的大型机器学习框架,以整合新兴的关键计算技术,例如半手审查的生成对抗性学习,可解释的深度学习,大规模优化和无处可比的散列,以分析大规模的电子麻醉数据,以增强麻醉风险的风险分层和改善质量健康的质量健康。 Specifically, the PIs investigate: 1) new computational tools to automate electronic anesthesia data processing, 2) novel semi-supervised generative adversarial network for anesthesia risk stratification, 3) interpretable deep learning model for clinical markers discovery, 4) scale up deep learning models for big data computation via new large-scale optimization algorithms, 5) new unsupervised deep generative adversarial hashing network for fast and accurate临床病例检索,6)使用实际的大规模麻醉数据评估所提出的方法和系统。将大规模的机器学习和数据密集型计算集成到电子麻醉数据挖掘方面具有创新性,该计算具有巨大的希望,可以使用全面的术前和术中患者概况来预测术后结果。开发的方法和工具会影响其他公共卫生研究,并使研究人员能够从事电子健康数据,以有效检验风险预测假设。该项目促进了新型教育工具的开发,以增强匹兹堡大学的几个当前课程。该奖项反映了NSF的法定使命,并使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heng Huang其他文献

Perianesthesia Care of the Oncologic Patients Undergoing Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy: A Retrospective Study.
接受热腹腔化疗肿瘤细胞减灭术的肿瘤患者的围麻醉护理:一项回顾性研究。
Experimental study on liquid immersion preheating of lithium-ion batteries under low temperature environment
低温环境下锂离子电池液浸预热实验研究
  • DOI:
    10.1016/j.csite.2024.104759
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Jiakang Bao;Zhi;Wei;Lei Wei;Jizu Lyu;Yang Li;Heng Huang;Yubai Li;Yongchen Song
  • 通讯作者:
    Yongchen Song
Computational Issues in Biomedical Nanometrics and Nano-Materials
生物医学纳米计量学和纳米材料的计算问题
  • DOI:
    10.4028/www.scientific.net/jnanor.1.50
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Heng Huang;Li Shen;J. Ford;Yu Hang Wang;Yu Rong Xu
  • 通讯作者:
    Yu Rong Xu
Research on Virtual Enterprise Workflow Modeling and Management System Implementation
虚拟企业工作流建模及管理系统实现研究
Functional analysis of cardiac MR images using SPHARM modeling
使用 SPHARM 建模对心脏 MR 图像进行功能分析
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heng Huang;Li Shen;J. Ford;F. Makedon;Rong Zhang;Ling Gao;J. Pearlman
  • 通讯作者:
    J. Pearlman

Heng Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heng Huang', 18)}}的其他基金

Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 118.23万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 118.23万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 118.23万
  • 项目类别:
    Continuing Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
  • 批准号:
    2405416
  • 财政年份:
    2023
  • 资助金额:
    $ 118.23万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 118.23万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2348306
  • 财政年份:
    2023
  • 资助金额:
    $ 118.23万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2213701
  • 财政年份:
    2022
  • 资助金额:
    $ 118.23万
  • 项目类别:
    Standard Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
  • 批准号:
    2225775
  • 财政年份:
    2022
  • 资助金额:
    $ 118.23万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2217003
  • 财政年份:
    2022
  • 资助金额:
    $ 118.23万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2211492
  • 财政年份:
    2022
  • 资助金额:
    $ 118.23万
  • 项目类别:
    Standard Grant

相似国自然基金

隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SCH: INT: Managing Glaucoma in the Digital Age: A New Tonometer to Connect Patients to their Caregivers
SCH:INT:数字时代的青光眼管理:一种将患者与其护理人员联系起来的新型眼压计
  • 批准号:
    2014389
  • 财政年份:
    2020
  • 资助金额:
    $ 118.23万
  • 项目类别:
    Standard Grant
SCH: INT: Smart and Connected Health for Newborn Ventilation
SCH:INT:新生儿通气的智能互联健康
  • 批准号:
    10261498
  • 财政年份:
    2019
  • 资助金额:
    $ 118.23万
  • 项目类别:
SCH: INT: Smart and Connected Health for Newborn Ventilation
SCH:INT:新生儿通气的智能互联健康
  • 批准号:
    10021660
  • 财政年份:
    2019
  • 资助金额:
    $ 118.23万
  • 项目类别:
SCH: INT: Collaborative Research: Development and analysis of new mathematical and statistical models for chronic pain
SCH:INT:合作研究:慢性疼痛新数学和统计模型的开发和分析
  • 批准号:
    10231168
  • 财政年份:
    2018
  • 资助金额:
    $ 118.23万
  • 项目类别:
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
  • 批准号:
    1838627
  • 财政年份:
    2018
  • 资助金额:
    $ 118.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了