Collaborative Research: Elucidating Correlations Between Solvation Structure and Electrochemical Behavior of Water-in-Salt Electrolytes for Highly Reversible Zinc Metal Anode

合作研究:阐明高度可逆锌金属阳极的盐包水电解质的溶剂化结构与电化学行为之间的相关性

基本信息

  • 批准号:
    2038366
  • 负责人:
  • 金额:
    $ 27.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Renewable energy from wind energy and solar power offers a solution to reducing greenhouse gas emissions and their impact on climate change. Unfortunately, the power that can be generated from these renewable sources is intermittent and typically asynchronous with electrical energy demand. Thus, large-scale energy storage is indispensable for a sustainable economy with reduced reliance on fossil fuels. Representing a promising solution to this energy storage need, aqueous zinc (Zn) metal batteries can store energy at a low cost, with low environmental footprint and high intrinsic safety. However, Zn metal batteries suffer from short cycle life, primarily due to corrosion of the Zn metal anode by water. This corrosion drastically curtails the cycle life of Zn metal batteries and causes a safety concern due to the generation of explosive hydrogen gas—two challenges that require outside-the-box solutions. The recent emergence of highly concentrated “water-in-salt” electrolytes offers a unique opportunity to re-define the stability between the Zn metal anode and the aqueous electrolyte. This project seeks to transform the cyclic stability and increase safe operation of aqueous Zn metal batteries. If successful, this will mark a significant breakthrough for energy storage technologies in the United States. For educational impacts, the investigators will leverage institutional programs their universities to increase the participation of community college students and high school students in summer research experiences. The training of graduate and undergraduate students will feed the workforce need of the next-generation energy sector. The project will elucidate the water stability properties in extremely concentrated solutions by integrating research activities in materials electrochemistry, femtosecond Raman spectroscopy, and ab initio computation. These complementary methods are highly synergistic, providing insights from different vantage points that when integrated can enable deep understanding. In the concentrated electrolytes of study there are few water molecules per solvated ion; therefore, the solvation sheaths are often thinner or incomplete compared to standard dilute solutions. Such solvation structures significantly alter the properties of the solvated ions and the dynamic water molecules as a solvent. Preliminary results have revealed that water molecules exhibit unusually high electrochemical stability against hydrogen evolution and display an intriguing blueshift of vibrational frequencies in stimulated Raman studies. First-principles calculations indicate that there exist peculiar properties of water molecules to be explored in these concentrated solutions. This project will generate an in-depth understanding of the correlation between solvation structures of the concentrated electrolytes and the corresponding stability in contact with the Zn metal anode. The values of such knowledge will transcend different disciplines of physical sciences and engineering and impact a broad range of STEM learners and practitioners in academic and industrial settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
来自风能和太阳能的可再生能源为减少温室气体排放及其对气候变化的影响提供了解决方案,但不幸的是,这些可再生能源产生的电力是间歇性的,并且通常与电力需求不同步。储能对于减少对化石燃料的依赖的可持续经济是必不可少的,水性锌(Zn)金属电池可以以低成本存储能源,环境足迹小且本质安全性高。 ,锌金属电池的循环寿命短,主要是由于锌金属阳极被水腐蚀,这种腐蚀极大地缩短了锌金属电池的循环寿命,并由于产生爆炸性氢气而引起安全问题——这是两个需要解决的挑战。最近出现的高浓度“盐包水”电解质为重新定义锌金属阳极和水性电解质之间的稳定性提供了独特的机会。如果成功,这将标志着美国储能技术的重大突破。对于教育影响,研究人员将利用其大学的机构计划来增加社区学院学生和高中生的参与。研究生和本科生的培训将满足下一代能源领域的劳动力需求,该项目将通过整合材料电化学、飞秒拉曼光谱的研究活动来阐明极其浓缩的溶液中的水稳定性。 , 和从头开始计算。这些互补的方法具有高度的协同作用,可以从不同的角度提供见解,在研究的浓缩电解质中,每个溶剂化离子的水分子很少,因此溶剂化鞘层通常更薄或不完整。与标准稀溶液相比,这种溶剂化结构显着改变了溶剂化离子和动态水分子作为溶剂的性质。在受激拉曼研究中,它具有抗析氢的稳定性,并显示出有趣的振动频率蓝移,表明这些浓缩溶液中存在有待探索的水分子的特殊性质,该项目将深入了解这种相关性。浓电解质的溶剂化结构和与锌金属阳极接触的相应稳定性之间的关系,这些知识的价值将超越物理科学和工程的不同学科,并影响学术和工业环境中广泛的 STEM 学习者和从业者。 .此奖项通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency
氯化物电解质使锌金属电池具有接近一致的库仑效率
  • DOI:
    10.1038/s41893-023-01092-x
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    27.6
  • 作者:
    Jiang, Heng;Tang, Longteng;Fu, Yanke;Wang, Shitong;Sandstrom, Sean K.;Scida, Alexis M.;Li, Guoxing;Hoang, David;Hong, Jessica J.;Chiu, Nan;et al
  • 通讯作者:
    et al
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Greaney其他文献

Peter Greaney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Greaney', 18)}}的其他基金

Collaborative Research: Elucidation of the Grotthuss Topochemistry in Reticular Electrodes for Fast Proton Batteries
合作研究:阐明快速质子电池网状电极中的 Grotthuss 拓扑化学
  • 批准号:
    2005165
  • 财政年份:
    2020
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Computational Design of Metal-Organic Framework Materials
合作研究:金属有机框架材料的计算设计
  • 批准号:
    1663360
  • 财政年份:
    2017
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Standard Grant
Engineering Smart Thermal Properties in Metal-Organic-Frameworks
金属有机框架中的工程智能热性能
  • 批准号:
    1403423
  • 财政年份:
    2014
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Standard Grant

相似国自然基金

基于ipRGCs功能的定量评估阐明其与儿童近视发病风险关联的前瞻性队列研究
  • 批准号:
    81803258
  • 批准年份:
    2018
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
结合影像质谱技术、代谢及脂质组学研究阐明黄芩调控胆固醇代谢转化机理
  • 批准号:
    81503222
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
合成生物学在阐明药物代谢酶及转运体相互关系研究中的应用
  • 批准号:
    81473278
  • 批准年份:
    2014
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
利用表面离子共振技术模拟白细胞穿越血管内皮(TEM)过程,阐明CD47调节白细胞TEM机制的研究
  • 批准号:
    81302611
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
以星形胶质细胞为靶点阐明慢性疼痛机制:DREAM信号通路的研究
  • 批准号:
    31070974
  • 批准年份:
    2010
  • 资助金额:
    37.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313861
  • 财政年份:
    2023
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the Ocean Dynamics Governing Melt at Glaciers Using Lagrangian Floats
合作研究:利用拉格朗日浮标阐明控制冰川融化的海洋动力学
  • 批准号:
    2319494
  • 财政年份:
    2023
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: Elucidating the multi-dimensionality and scaling of avian diversity-vegetation relationships
合作研究:MRA:阐明鸟类多样性与植被关系的多维性和尺度
  • 批准号:
    2307189
  • 财政年份:
    2023
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the roles of biogenic exudates in the cycling and uptake of rare earth elements
合作研究:阐明生物渗出物在稀土元素循环和吸收中的作用
  • 批准号:
    2221883
  • 财政年份:
    2023
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the Roles of Electric Fields Within Mixed Ionic and Electronic Conducting Oxides Under Electrochemical Reducing Conditions
合作研究:阐明电化学还原条件下混合离子和电子导电氧化物中电场的作用
  • 批准号:
    2333166
  • 财政年份:
    2023
  • 资助金额:
    $ 27.22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了