Collaborative Research: Elucidation of the Grotthuss Topochemistry in Reticular Electrodes for Fast Proton Batteries

合作研究:阐明快速质子电池网状电极中的 Grotthuss 拓扑化学

基本信息

  • 批准号:
    2005165
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Non-Technical Summary With this collaborative project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, two research groups at the University of California Riverside and Oregon State University investigate fundamental aspects of how fast diffusion of hydrogen ions occurs in confined networks of water. When metal ions move though water, they push past the water molecules as they go. It is already known that hydrogen ions migrate in a completely different manner and faster. The researchers study in detail how this process works and what makes it many times faster than the diffusion of metal ions, for example what makes it faster than that of lithium ions in batteries. Several factors can enable very fast, hydrogen-ion batteries that have the potential to be charged and discharged for millions of cycles, and so present a remarkable opportunity to realize the Holy Grail of electrochemical energy storage: to achieve simultaneously the energy densities of batteries and the power and cycle life of capacitors. The abundance of hydrogen also makes hydrogen-ion batteries a promising candidate for the grid-level storage batteries that are needed to provide a continuous and dependable electricity supply from intermittent power sources such as wind and solar energy. Advancing knowledge and the associated technology in these areas aids the United States to remain economically competitive. Additionally, the project produces educational videos targeted to students and the broader public that present concepts in energy storage and its role in society. Training of graduate and undergraduate students with the skills needed to enter the workforce in the energy technology sector and additional outreach activities take place at both institutions.Technical Summary The existing knowledge of battery chemistry is built upon the understanding that the kinetics are dictated by desolvation and vehicular diffusion of the working ion. The research in this collaborative project, which is supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, explores a new paradigm of battery chemistry where by using protons as the working ions with an aqueous electrolyte, charge conduction does not rely on the long-range physical migration of ions through the host electrode but instead obtains long-range movement of charge via the Grotthuss mechanism of proton displacement along the crystal water network in an electrode. Transport of protons via the Grotthuss mechanism involves the movement of a quasiparticle defect in the bonding topology of water. It is fundamentally different from the vehicular transport of metal cations and could give rise to ultra-fast insertion kinetics and the ability to provide batteries that deliver high power at ultra-low temperatures. The project focuses on mechanisms of proton transport and storage in Turnbull blue and its family of analog compounds. These systems have an open and defected crystal structure that hosts an internal network of crystal water. The crystal water network provides pathways for Grotthuss diffusion, making the kinetics of proton transport and storage exceedingly fast, even at temperatures well below the freezing temperature of water. This project tests the central hypothesis that the transport performance of protons in this system depends on the topology imposed on the H-bonding network of crystal water by the surrounding host framework. To test this, the researchers a. determine the topological characteristics of the water network in Prussian blue analogs, from the atomic to the mesoscopic scale, and the role they play in Grotthuss topochemistry; b. elucidate the mechanisms of proton insertion, storage, and transport in the water network within Prussian blue analogs at all states of charge; and c. formulate testable design principles that can guide the development of new reticular materials for proton transport and storage.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要 通过这个合作项目,在美国国家科学基金会材料研究部固态和材料化学项目的支持下,加州大学河滨分校和俄勒冈州立大学的两个研究小组研究了氢离子扩散速度的基本方面发生在有限的水网络中。当金属离子在水中移动时,它们会推过水分子。众所周知,氢离子以完全不同的方式迁移且速度更快。研究人员详细研究了这个过程是如何进行的,以及是什么让它比金属离子的扩散快很多倍,例如是什么让它比电池中的锂离子扩散更快。有几个因素可以使非常快速的氢离子电池具有数百万次充电和放电的潜力,因此为实现电化学储能的圣杯提供了绝佳的机会:同时实现电池的能量密度和电容器的功率和循环寿命。丰富的氢也使氢离子电池成为电网级蓄电池的有前途的候选者,这些电池需要从风能和太阳能等间歇性电源提供连续可靠的电力供应。推进这些领域的知识和相关技术有助于美国保持经济竞争力。此外,该项目还制作针对学生和更广泛公众的教育视频,介绍储能概念及其在社会中的作用。两个机构都对研究生和本科生进行了进入能源技术领域劳动力所需技能的培训,并开展了其他外展活动。技术摘要 电池化学的现有知识是建立在以下理解之上的:动力学是由去溶剂化和工作离子的车辆扩散。该合作项目的研究得到了美国国家科学基金会材料研究部固态和材料化学项目的支持,探索了一种新的电池化学范例,其中通过使用质子作为水性电解质的工作离子,电荷传导不依赖于离子通过主电极的长距离物理迁移,而是通过质子沿着电极中的结晶水网络位移的Grotthuss机制获得电荷的长距离移动。通过格罗特胡斯机制进行的质子传输涉及水键合拓扑中准粒子缺陷的运动。它与金属阳离子的车辆运输有根本的不同,可以产生超快的插入动力学,并能够提供在超低温下提供高功率的电池。该项目重点研究特恩布尔蓝及其类似化合物家族的质子传输和存储机制。这些系统具有开放且有缺陷的晶体结构,具有结晶水的内部网络。结晶水网络为格罗特胡斯扩散提供了途径,使得质子传输和储存的动力学变得非常快,即使在远低于水的冰点温度的情况下也是如此。该项目测试了中心假设,即该系统中质子的传输性能取决于周围主体框架对结晶水氢键网络施加的拓扑结构。为了测试这一点,研究人员a.确定普鲁士蓝类似物中水网络的拓扑特征,从原子到介观尺度,以及它们在格罗特胡斯拓扑化学中发挥的作用; b.阐明普鲁士蓝类似物在所有荷电状态下水网络中质子插入、储存和运输的机制;和c。制定可测试的设计原则,可以指导用于质子传输和存储的新型网状材料的开发。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
[LiCl 2 ] − Superhalide: A New Charge Carrier for Graphite Cathode of Dual‐Ion Batteries
[LiCl 2 ] — 超级卤化物:双离子电池石墨负极的新型电荷载体
  • DOI:
    10.1002/adfm.202112709
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Kim, Keun‐il;Tang, Longteng;Mirabedini, Pegah;Yokoi, Amika;Muratli, Jesse M.;Guo, Qiubo;Lerner, Michael M.;Gotoh, Kazuma;Greaney, Peter Ale;Fang, Chong;et al
  • 通讯作者:
    et al
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Greaney其他文献

Peter Greaney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Greaney', 18)}}的其他基金

Collaborative Research: Elucidating Correlations Between Solvation Structure and Electrochemical Behavior of Water-in-Salt Electrolytes for Highly Reversible Zinc Metal Anode
合作研究:阐明高度可逆锌金属阳极的盐包水电解质的溶剂化结构与电化学行为之间的相关性
  • 批准号:
    2038366
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Design of Metal-Organic Framework Materials
合作研究:金属有机框架材料的计算设计
  • 批准号:
    1663360
  • 财政年份:
    2017
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Engineering Smart Thermal Properties in Metal-Organic-Frameworks
金属有机框架中的工程智能热性能
  • 批准号:
    1403423
  • 财政年份:
    2014
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似国自然基金

抗肿瘤药物超说明书用药的价值评估研究:基于ELECTRE法的探索
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“互联网+”背景下的业绩说明会有效性研究
  • 批准号:
    72002234
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
招股说明书描述性信息披露研究
  • 批准号:
    71972045
  • 批准年份:
    2019
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于计算机文本分析的IPO申请材料的披露质量研究
  • 批准号:
    71602131
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
基于文本分析的管理层语调研究:信息含量及其经济后果
  • 批准号:
    71502116
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
  • 批准号:
    2314719
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
  • 批准号:
    2314720
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidation of the Role of Atomic Structures of CeO2(111) on the Nucleation and Growth of Metal Clusters through in situ STM and Theory
合作研究:通过原位STM和理论阐明CeO2(111)原子结构对金属团簇成核和生长的作用
  • 批准号:
    2204074
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Elucidation of mutant p53-medidated mechanisms in promoting metastatic esophageal cancer
阐明突变型 p53 介导的促进转移性食管癌的机制
  • 批准号:
    10689716
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
Elucidation of mutant p53-medidated mechanisms in promoting metastatic esophageal cancer
阐明突变型 p53 介导的促进转移性食管癌的机制
  • 批准号:
    10537915
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了