Collaborative Research: Elucidating the Ocean Dynamics Governing Melt at Glaciers Using Lagrangian Floats
合作研究:利用拉格朗日浮标阐明控制冰川融化的海洋动力学
基本信息
- 批准号:2319494
- 负责人:
- 金额:$ 126.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The proposed study will determine the physical processes that cause melting at an Alaskan glacier that ends in a fjord. The study will try to prove whether recirculating cells and waves below the sea-surface cause stronger velocities than the flows associated with melting glaciers. The project will develop instruments that drift in three dimensions, capable of drifting along a fixed depth or move with a water type. These drifting instruments will be combined with instrumentation that is fixed at one place and with ship measurements, and with computer models to decipher the interactions of different three-dimensional motions at the glacier face; and to resolve the time and space structure of flows that enhance heat flux to, and melting of, the glacier. Understanding of these processes shall allow projections of glacier mass loss and resulting melt-water flux into the polar oceans. As Broader Impacts, the study will help in global-scale formulations of submarine glacial melting. The Principal Investigator is an early career investigator, as well as two of the Co-PIs. The project will support a couple of graduate students.The proposed work will characterize the processes that drive near-glacier circulation and submarine glacial melt at LeConte Glacier, Alaska. The hypothesis is that accelerated glacier melting results from different-scale recirculations and internal waves at the glacier face that are not included in standard ocean-model parameterizations of glacial melt; and that these recirculations and internal wave motions overwhelm the plume velocities. The hypothesis will be tested via development of microfloats (µfloats) that drift in 3D, capable of drifting along a fixed depth or move with water (an isopycnal surface). The study will use acoustically tracked Lagrangian µfloats, mooring and vessel observations, and numerical modeling to elucidate the interplay of: (1) entrainment and recirculation driven by discharge plumes; (2) internal waves and their contributions to vertical velocity at the glacier face; and (3) the spatiotemporal structure of lateral circulations believed to enhance heat flux to the glacier. These processes shall allow projections of glacier mass loss and resulting melt-water flux into the polar oceans. High-resolution numerical simulations will inform deployments and be used to synthesize results. As Broader Impacts, the study will inform parametrizations of submarine melting. The PI and two Co-PIs are early career investigators, and the project will support a couple of graduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拟议的研究将确定导致终止于峡湾的阿拉斯加冰川融化的物理过程。该研究将试图证明海面以下的循环细胞和波浪是否会产生比冰川融化相关的流动更快的速度。三维漂流仪器,能够沿固定深度漂流或随水型移动这些漂流仪器将与固定在一处的仪器和船舶测量相结合,并与计算机模型相结合。破译冰川表面不同三维运动的相互作用;并解决增强冰川热通量和融化的流动的时间和空间结构。作为更广泛的影响,该研究将有助于全球范围内海底冰川融化的制定。该项目的首席研究员是一名早期职业研究员。支持几名研究生。拟议的工作将描述阿拉斯加勒孔特冰川驱动近冰川环流和海底冰川融化的过程。假设是冰川加速融化是由冰川表面不同规模的再循环和内波造成的。不包括在冰川融化的标准海洋模型参数化中;并且这些再循环和内部波浪运动压倒了羽流速度。 3D 漂移的微浮体(μfloats),能够沿着固定深度漂移或随水移动(等密度表面)。该研究将使用声学跟踪的拉格朗日μfloats、系泊和船只观测以及数值模型来阐明以下因素之间的相互作用:( 1)由排放羽流驱动的夹带和再循环;(2)内波及其对冰川表面垂直速度的贡献;横向环流的时空结构被认为可以增强冰川的热通量,这些过程将允许预测冰川质量损失和由此产生的融化水通量进入极地海洋,这将为部署提供信息并用于综合结果。更广泛的影响,该研究将为潜艇熔化的参数化提供信息 PI 和两名 Co-PI 都是早期职业调查员,该项目将支持几名研究生。该奖项反映了 NSF 的法定使命。通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesse Cusack其他文献
Jesse Cusack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于ipRGCs功能的定量评估阐明其与儿童近视发病风险关联的前瞻性队列研究
- 批准号:81803258
- 批准年份:2018
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
结合影像质谱技术、代谢及脂质组学研究阐明黄芩调控胆固醇代谢转化机理
- 批准号:81503222
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
合成生物学在阐明药物代谢酶及转运体相互关系研究中的应用
- 批准号:81473278
- 批准年份:2014
- 资助金额:65.0 万元
- 项目类别:面上项目
利用表面离子共振技术模拟白细胞穿越血管内皮(TEM)过程,阐明CD47调节白细胞TEM机制的研究
- 批准号:81302611
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
以星形胶质细胞为靶点阐明慢性疼痛机制:DREAM信号通路的研究
- 批准号:31070974
- 批准年份:2010
- 资助金额:37.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
- 批准号:
2313861 - 财政年份:2023
- 资助金额:
$ 126.39万 - 项目类别:
Standard Grant
Collaborative Research: MRA: Elucidating the multi-dimensionality and scaling of avian diversity-vegetation relationships
合作研究:MRA:阐明鸟类多样性与植被关系的多维性和尺度
- 批准号:
2307189 - 财政年份:2023
- 资助金额:
$ 126.39万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the roles of biogenic exudates in the cycling and uptake of rare earth elements
合作研究:阐明生物渗出物在稀土元素循环和吸收中的作用
- 批准号:
2221883 - 财政年份:2023
- 资助金额:
$ 126.39万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the Roles of Electric Fields Within Mixed Ionic and Electronic Conducting Oxides Under Electrochemical Reducing Conditions
合作研究:阐明电化学还原条件下混合离子和电子导电氧化物中电场的作用
- 批准号:
2333166 - 财政年份:2023
- 资助金额:
$ 126.39万 - 项目类别:
Continuing Grant
Elucidating mechanisms of checkpoint inhibitor-induced diabetes
阐明检查点抑制剂诱发糖尿病的机制
- 批准号:
10723194 - 财政年份:2023
- 资助金额:
$ 126.39万 - 项目类别: