The Algebra of Flow Categories
流范畴代数
基本信息
- 批准号:2103805
- 负责人:
- 金额:$ 54.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Should you draw on a piece of paper, without running back over your strokes, you will find that your figure has an even number of endpoints: one for each time you brought pen to paper, and one for each time you lifted it. This basic fact gives a relationship between the topology of one dimensional figures and algebra. Mathematicians have built an elaborate machine based on the original work of Pontryagin and Thom from the middle of the 20th century, extending this correspondence to higher dimensions. This project aims to formulate notions of algebraic structures on the geometric side of this correspondence, with intended applications in the study of topology. The project will also support the training of graduate students in the subject.The project's new formulations are centered around the notion of a flow category which has become central to modern approaches to symplectic topology, as well as to its interactions with other mathematical fields, such as algebraic geometry, low dimensional topology, and dynamical systems, as well as mathematical physics, because the output of Floer's theory exactly provides such a structure. The PI plans to formulate algebraic structures (algebras, modules, etc.) geometrically at the level of the underlying flow categories. In this way, the PI expects to make substantial advances in three areas: (i) Floer homotopy theory and its applications to symplectic topology, (ii) the study of Fukaya categories and its applications to mirror symmetry, and (iii) the interaction between differential and algebraic topology, via a geometric model of Waldhausen's A-theory, with intended applications to the study of Lagrangians embeddings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如果您在一张纸上画画,而不会跑到笔触上,您会发现您的身影有均匀数量的端点:每次将笔纸带到纸上时,每次提起它。这个基本事实给出了一维数字的拓扑与代数之间的关系。数学家根据20世纪中叶的Pontryagin和Thom的原始作品建造了一台精心设计的机器,将其扩展到更高的维度。该项目旨在在该对应关系的几何侧提出代数结构的概念,并在拓扑研究中采用了预期的应用。 The project will also support the training of graduate students in the subject.The project's new formulations are centered around the notion of a flow category which has become central to modern approaches to symplectic topology, as well as to its interactions with other mathematical fields, such as algebraic geometry, low dimensional topology, and dynamical systems, as well as mathematical physics, because the output of Floer's theory exactly provides such a structure. PI计划在基础流类别的水平上以几何形式制定代数结构(代数,模块等)。 In this way, the PI expects to make substantial advances in three areas: (i) Floer homotopy theory and its applications to symplectic topology, (ii) the study of Fukaya categories and its applications to mirror symmetry, and (iii) the interaction between differential and algebraic topology, via a geometric model of Waldhausen's A-theory, with intended applications to the study of Lagrangians该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammed Abouzaid其他文献
Framed E2 structures in Floer theory
Florer 理论中的框架 E2 结构
- DOI:
10.1016/j.aim.2024.109755 - 发表时间:
2024 - 期刊:
- 影响因子:1.7
- 作者:
Mohammed Abouzaid;Yoel Groman;Umut Varolgunes - 通讯作者:
Umut Varolgunes
Mohammed Abouzaid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammed Abouzaid', 18)}}的其他基金
FRG: Collaborative Research: Floer homotopy theory
FRG:合作研究:弗洛尔同伦理论
- 批准号:
1564172 - 财政年份:2016
- 资助金额:
$ 54.4万 - 项目类别:
Standard Grant
Conference: Topological and Quantitative Aspects of Symplectic Manifolds; Columbia University and Barnard College, March 17-20, 2016
会议:辛流形的拓扑和定量方面;
- 批准号:
1554820 - 财政年份:2016
- 资助金额:
$ 54.4万 - 项目类别:
Standard Grant
Algebraic structures in Floer theory
弗洛尔理论中的代数结构
- 批准号:
1308179 - 财政年份:2013
- 资助金额:
$ 54.4万 - 项目类别:
Standard Grant
相似国自然基金
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于CTA血流动力学组学智能评估颅内小动脉瘤稳定性的研究
- 批准号:82302300
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
流动补偿策略视角下权力感知对消费者行为的影响机制研究
- 批准号:72302017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽液含率气液两相流动态调控的强制环状流测量方法研究
- 批准号:62373270
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Novel Combination Therapy for Treatment and Prevention of PulmonaryLymphangioleiomyomatosis (LAM) and Tuberous Sclerosis Complex (TSC)
治疗和预防肺淋巴管平滑肌瘤病 (LAM) 和结节性硬化症 (TSC) 的新型联合疗法
- 批准号:
10697901 - 财政年份:2023
- 资助金额:
$ 54.4万 - 项目类别:
Cerebral Hemodynamics and Stroke in HIV-associated TB Meningitis.
HIV 相关结核性脑膜炎的脑血流动力学和中风。
- 批准号:
10762713 - 财政年份:2023
- 资助金额:
$ 54.4万 - 项目类别:
Enhancing immune mediated head and neck cancer anti-tumor activity using nanoparticles
使用纳米粒子增强免疫介导的头颈癌抗肿瘤活性
- 批准号:
10747013 - 财政年份:2023
- 资助金额:
$ 54.4万 - 项目类别:
Central role of Caspase-8 in control of host tolerance and resistance mechanisms in pulmonary macrophage populations during severe respiratory infections
Caspase-8 在严重呼吸道感染期间肺巨噬细胞群宿主耐受和抵抗机制中的核心作用
- 批准号:
10668787 - 财政年份:2023
- 资助金额:
$ 54.4万 - 项目类别:
miRNA-Nanotechnology as a novel regenerative therapy for lymphangioleiomyomatosis
miRNA-纳米技术作为淋巴管平滑肌瘤病的新型再生疗法
- 批准号:
10761353 - 财政年份:2023
- 资助金额:
$ 54.4万 - 项目类别: