Collaborative Research: SaTC: EDU: Fire and ICE: Raising Security Awareness through Experiential Learning Activities for Building Trustworthy Deep Learning-based Applications
协作研究:SaTC:EDU:火灾和 ICE:通过体验式学习活动提高安全意识,构建值得信赖的基于深度学习的应用程序
基本信息
- 批准号:2244219
- 负责人:
- 金额:$ 23.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In privacy-sensitive and safety-critical applications, deep learning models are increasingly accepted and utilized. This trend is bound to continue: many open-source frameworks and tools from online code repositories are embedded with deep learning modules. However, many deep learning models contain hidden weaknesses that could be exploited by attacks, posing significant risks to user privacy and safety. It is essential, therefore, to raise security awareness among college students, who are the future data engineering practitioners, and equip them with knowledge and strategies for designing trustworthy, deep learning based applications. This project responds to the urgent need in three critical areas: integrity, confidentiality and equity (ICE). A series of easy-to-implement experiential learning activities concretize learners’ awareness of potential vulnerabilities in deep learning models and enhance their ability to build secure applications of their own. These activities are expressly designed for learners with little prior knowledge, and are streamlined to reduce preparation time and cost for the instructor. The activities’ flexibility maximizes the equitable dissemination of relevant knowledge that is critical to society. The investigators are especially mindful of the needs of minority and socio-economically disadvantaged student populations.A total of twelve learning activity sets address a wide array of issues arising in ICE areas. For data integrity, threats posed by adversarial examples, data poisoning, and backdoor hidden features are tackled. The emphasis on experiential learning allows learners to become acquainted with the process and effects of attacks before learners are equipped with strategies and trained to implement proper defense. To enhance confidentiality, learners first encounter at least two potential sources of privacy leakage, dataset overfitting and abusive querying, and are then taught preventative countermeasures. Both sample biases and algorithmic biases in deep learning models are addressed in the learning activities. Artificial intelligence and deep learning constitute a fast-developing field, and educators must keep pace. The project enriches the supply of educational tools by introducing recent discoveries in the field, including those made by the investigators themselves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在隐私敏感和安全关键的应用中,深度学习模型越来越被接受和利用,这种趋势必将持续下去:许多来自在线代码存储库的开源框架和工具都嵌入了深度学习模块。因此,提高作为未来数据工程实践者的大学生的安全意识,并为他们提供设计知识和策略是至关重要的。该项目是值得信赖的、基于深度学习的应用程序。满足了完整性、保密性和公平性(ICE)三个关键领域的迫切需求。一系列易于实施的体验式学习活动具体化了学习者对深度学习模型潜在漏洞的认识,并增强了他们构建安全应用程序的能力。这些活动是专门为先验知识很少的学习者设计的,并且经过简化,以减少教师的准备时间和成本。这些活动的灵活性最大限度地提高了对社会至关重要的相关知识的公平传播。的需求总共十二个学习活动集解决了 ICE 领域出现的各种问题,包括对抗性示例、数据中毒和后门隐藏功能带来的威胁。在学习者配备策略并接受培训以实施适当的防御之前,学习可以让学习者熟悉攻击的过程和影响。为了增强保密性,学习者首先会遇到至少两个潜在的隐私泄露源:数据集过度拟合和滥用。人工智能和深度学习构成了一个快速发展的领域,教育工作者必须跟上步伐,丰富其供给。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhipeng Cai其他文献
Multiple solutions for a Kirchhoff-type problem involving nonlocal fractional $p$-Laplacian and concave-convex nonlinearities
涉及非局部分数 $p$-拉普拉斯和凹凸非线性的基尔霍夫型问题的多种解决方案
- DOI:
10.1216/rmj-2017-47-6-1803 - 发表时间:
2017-11-01 - 期刊:
- 影响因子:0.8
- 作者:
Changmu Chu;Jiao;Zhipeng Cai - 通讯作者:
Zhipeng Cai
DAM: A Bayesian Method for Detecting Genome-wide Associations on Multiple Diseases
DAM:一种用于检测多种疾病的全基因组关联的贝叶斯方法
- DOI:
10.1007/978-3-319-19048-8_9 - 发表时间:
2015-06-06 - 期刊:
- 影响因子:0
- 作者:
Xuan Guo;Jing Zhang;Zhipeng Cai;D. Du;Yi Pan - 通讯作者:
Yi Pan
Exact-Fun: An Exact and Efficient Federated Unlearning Approach
Exact-Fun:一种精确且高效的联合遗忘方法
- DOI:
10.1109/icdm58522.2023.00188 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:0
- 作者:
Zuobin Xiong;Wei Li;Yingshu Li;Zhipeng Cai - 通讯作者:
Zhipeng Cai
Privacy Threat and Defense for Federated Learning With Non-i.i.d. Data in AIoT
非独立同分布联合学习的隐私威胁与防御
- DOI:
10.1109/tii.2021.3073925 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:12.3
- 作者:
Zuobin Xiong;Zhipeng Cai;Daniel Takabi;Wei Li - 通讯作者:
Wei Li
Whitespace measurement and virtual backbone construction for Cognitive Radio Networks: From the social perspective
认知无线电网络的空白测量和虚拟主干建设:从社会角度
- DOI:
10.1109/sahcn.2015.7338344 - 发表时间:
2015-06-22 - 期刊:
- 影响因子:0
- 作者:
S. Ji;Zhipeng Cai;Meng Han;R. Beyah - 通讯作者:
R. Beyah
Zhipeng Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhipeng Cai', 18)}}的其他基金
SaTC: EDU: Collaborative: Advancing Cybersecurity Learning Through Inquiry-based Laboratories on a Container-based Virtualization Platform
SaTC:EDU:协作:通过基于容器的虚拟化平台上的探究实验室推进网络安全学习
- 批准号:
1912753 - 财政年份:2019
- 资助金额:
$ 23.53万 - 项目类别:
Standard Grant
CyberTraining: CIP: Collaborative Research: Enhancing Mobile Security Education by Creating Eureka Experiences
网络培训:CIP:协作研究:通过创建 Eureka 体验加强移动安全教育
- 批准号:
1829674 - 财政年份:2018
- 资助金额:
$ 23.53万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative: Privacy Attacks and Defense Mechanisms in Online Social Networks
SaTC:核心:媒介:协作:在线社交网络中的隐私攻击和防御机制
- 批准号:
1704287 - 财政年份:2017
- 资助金额:
$ 23.53万 - 项目类别:
Standard Grant
CAREER: Routing in Cognitive Radio Networks Considering Activities of Primary Users
职业:考虑主要用户活动的认知无线电网络中的路由
- 批准号:
1252292 - 财政年份:2013
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant
EAGER: One-off/Continuous Convergecast and Broadcast Scheduling in Probabilistic Wireless Mesh Networks
EAGER:概率无线网状网络中的一次性/连续融合广播和广播调度
- 批准号:
1152001 - 财政年份:2011
- 资助金额:
$ 23.53万 - 项目类别:
Standard Grant
相似国自然基金
IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
- 批准号:82301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
- 批准号:82373325
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
- 批准号:82301216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
- 批准号:82301257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
- 批准号:52371115
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant