SaTC: CORE: Small: New Techniques for Optimizing Accuracy in Differential Privacy Applications
SaTC:核心:小型:优化差异隐私应用准确性的新技术
基本信息
- 批准号:1931686
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Differential Privacy is an important advance in the modern toolkit for protecting privacy and confidentiality. It allows organizations such as government agencies and private companies to collect data and publish statistics about it without leaking personal information about people -- no matter how sophisticated an attacker is. The project's novelties are in the careful design of new differentially private tools that provide more accurate population statistics while maintaining strong privacy guarantees. The project's impacts are in the ability to create datasets for social science and policy research without sacrificing privacy of individuals. The project includes both graduate and undergraduate students in this research. The technical ideas behind this project are that a careful analysis of privacy proofs for many differentially private algorithms can identify additional (noisy) information that can be released without changing the privacy guarantees. In addition to this, noise that is correlated between different stages of a differentially private algorithm can further reduce the variance of the final result. These techniques will allow smaller organizations to optimize the accuracy of their privacy preserving algorithms for practical deployment, and customize existing algorithms by swapping in building blocks that have more accuracy and that allow them to take better advantage of background knowledge.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
差异隐私是保护隐私和机密性的现代工具包中的重要进步。它允许政府机构和私人公司等组织收集数据并发布有关该数据的统计信息,而无需泄漏有关人员的个人信息 - 无论攻击者多么复杂。该项目的新颖性在于仔细设计新的私人工具,这些工具提供了更准确的人口统计数据,同时保持强大的隐私保证。该项目的影响在于能够为社会科学和政策研究创建数据集而不牺牲个人隐私。该项目在本研究中包括研究生和本科生。 该项目背后的技术思想是,对许多差异私人算法的隐私证明进行仔细分析可以识别出可以在不更改隐私保证的情况下发布的其他(嘈杂)信息。除此之外,差异私有算法的不同阶段之间相关的噪声可以进一步降低最终结果的方差。这些技术将使较小的组织能够优化其隐私保存算法的实际部署算法的准确性,并通过交换具有更准确性的构件,并可以更好地利用背景知识来定制现有算法。该奖项反映了NSF的法定任务,并通过评估了基金会的范围来反映支持者的支持,并通过基金会的范围进行了评估和宽广的效果。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scaling up Differentially Private Deep Learning with Fast Per-Example Gradient Clipping
- DOI:10.2478/popets-2021-0008
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Jaewoo Lee;Daniel Kifer
- 通讯作者:Jaewoo Lee;Daniel Kifer
Free gap estimates from the exponential mechanism, sparse vector, noisy max and related algorithms
来自指数机制、稀疏向量、噪声最大值和相关算法的自由间隙估计
- DOI:10.1007/s00778-022-00728-2
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ding, Zeyu;Wang, Yuxin;Xiao, Yingtai;Wang, Guanhong;Zhang, Danfeng;Kifer, Daniel
- 通讯作者:Kifer, Daniel
Answering Private Linear Queries Adaptively Using the Common Mechanism
使用通用机制自适应地回答私有线性查询
- DOI:10.14778/3594512.3594519
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Xiao, Yingtai;Wang, Guanhong;Zhang, Danfeng;Kifer, Daniel
- 通讯作者:Kifer, Daniel
Free Gap Information from the Differentially Private Sparse Vector and Noisy Max Mechanisms
- DOI:10.14778/3368289.3368295
- 发表时间:2019-11-01
- 期刊:
- 影响因子:2.5
- 作者:Ding, Zeyu;Wang, Yuxin;Kifer, Daniel
- 通讯作者:Kifer, Daniel
Optimizing Fitness-For-Use of Differentially Private Linear Queries
- DOI:10.14778/3467861.3467864
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Yingtai Xiao;Zeyu Ding;Yuxin Wang;Danfeng Zhang;Daniel Kifer
- 通讯作者:Yingtai Xiao;Zeyu Ding;Yuxin Wang;Danfeng Zhang;Daniel Kifer
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Kifer其他文献
Crawler
履带式
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Kenneth A. Ross;C. S. Jensen;R. Snodgrass;C. Dyreson;Spiros Skiadopoulos;Cristina Sirangelo;M. Larsgaard;G. Grahne;Daniel Kifer;Hans;H. Hinterberger;Alin Deutsch;Alan Nash;K. Wada;W. M. P. Aalst;C. Dyreson;P. Mitra;Ian H. Witten;Bing Liu;Charu C. Aggarwal;M. Tamer Özsu;Chimezie Ogbuji;Chintan Patel;Chunhua Weng;A. Wright;Amnon Shabo (Shvo);Dan Russler;R. A. Rocha;Yves A. Lussier;James L. Chen;Mohammed J. Zaki;Antonio Corral;Michael Vassilakopoulos;Dimitrios Gunopulos;Dietmar Wolfram;S. Venkatasubramanian;Michalis Vazirgiannis;Ian Davidson;Sunita Sarawagi;Liam Peyton;Gregory D. Speegle;Victor Vianu;Dirk Van Gucht;Opher Etzion;Francisco Curbera;AnnMarie Ericsson;Mikael Berndtsson;J. Mellin;P. Gray;Goce Trajcevski;Ouri Wolfson;Peter Scheuermann;Chitra Dorai;Michael Weiner;A. Borgida;J. Mylopoulos;Gottfried Vossen;A. Reuter;Val Tannen;S. Elnikety;Alan Fekete;L. Bertossi;F. Geerts;Wenfei Fan;T. Westerveld;Cathal Gurrin;Jaana Kekäläinen;Paavo Arvola;Marko Junkkari;Kyriakos Mouratidis;Jeffrey Xu Yu;Yong Yao;John F. Gehrke;S. Babu;N. Palmer;C. Leung;Michael W. Carroll;Aniruddha S. Gokhale;Mourad Ouzzani;Brahim Medjahed;Ahmed K. Elmagarmid;S. Manegold;Graham Cormode;Serguei Mankovskii;Donghui Zhang;Theo Härder;Wei Gao;Cheng Niu;Qing Li;Yu Yang;Payam Refaeilzadeh;Lei Tang;Huan Liu;Torben Bach Pedersen;Konstantinos Morfonios;Y. Ioannidis;Michael H. Böhlen;R. Snodgrass;Lei Chen - 通讯作者:
Lei Chen
On the Tensor Representation and Algebraic Homomorphism of the Neural State Turing Machine
神经状态图灵机的张量表示与代数同态
- DOI:
10.48550/arxiv.2309.14690 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Mali;Alexander Ororbia;Daniel Kifer;L. Giles - 通讯作者:
L. Giles
Attacks on privacy and deFinetti's theorem
- DOI:
10.1145/1559845.1559861 - 发表时间:
2009-06 - 期刊:
- 影响因子:0
- 作者:
Daniel Kifer - 通讯作者:
Daniel Kifer
Investigating Symbolic Capabilities of Large Language Models
研究大型语言模型的符号功能
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Neisarg Dave;Daniel Kifer;C. L. Giles;A. Mali - 通讯作者:
A. Mali
Connectionist Model
联结主义模型
- DOI:
10.1007/978-0-387-39940-9_2274 - 发表时间:
2009 - 期刊:
- 影响因子:3.5
- 作者:
K. A. Ross;C. Jensen;R. Snodgrass;C. Dyreson;Spiros Skiadopoulos;Cristina Sirangelo;M. Larsgaard;G. Grahne;Daniel Kifer;H. Jacobsen;H. Hinterberger;Alin Deutsch;Alan Nash;K. Wada;Wil M.P. van der Aalst;C. Dyreson;P. Mitra;I. Witten;Bing Liu;C. Aggarwal;M. Tamer Özsu;Chimezie Ogbuji;Chintan Patel;C. Weng;Adam Wright;Amnon Shabo (Shvo);Dan Russler;R. Rocha;Y. Lussier;James L. Chen;Mohammed J. Zaki;Antonio Corral;M. Vassilakopoulos;D. Gunopulos;Dietmar Wolfram;S. Venkatasubramanian;M. Vazirgiannis;I. Davidson;Sunita Sarawagi;L. Peyton;Gregory D. Speegle;V. Vianu;D. V. Gucht;Opher Etzion;F. Curbera;AnnMarie Ericsson;Mikael Berndtsson;J. Mellin;P. Gray;Goce Trajcevski;O. Wolfson;P. Scheuermann;C. Dorai;M. Weiner;Alexander Borgida;J. Mylopoulos;G. Vossen;A. Reuter;V. Tannen;S. Elnikety;A. Fekete;L. Bertossi;F. Geerts;W. Fan;T. Westerveld;C. Gurrin;Jaana Kekäläinen;Paavo Arvola;Marko Junkkari;K. Mouratidis;J. Yu;Yong Yao;J. Gehrke;S. Babu;N. Palmer;C. Leung;Michael W. Carroll;A. Gokhale;M. Ouzzani;Brahim Medjahed;A. Elmagarmid;S. Manegold;Graham Cormode;Serguei Mankovskii;Donghui Zhang;T. Härder;Wei Gao;Cheng Niu;Qing Li;Yu Yang;Payam Refaeilzadeh;Lei Tang;Huan Liu;T. Pedersen;Konstantinos Morfonios;Y. Ioannidis;Michael H. Böhlen;R. Snodgrass;Lei Chen - 通讯作者:
Lei Chen
Daniel Kifer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Kifer', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Developing for Differential Privacy with Formal Methods and Counterexamples
SaTC:核心:媒介:使用正式方法和反例开发差异化隐私
- 批准号:
1702760 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
TWC SBES: Medium: Utility for Private Data Sharing in Social Science
TWC SBES:媒介:社会科学中私人数据共享的实用程序
- 批准号:
1228669 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: An Axiomatic Basis for Statistical Privacy
职业:统计隐私的公理基础
- 批准号:
1054389 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
- 批准号:82370387
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
- 批准号:32300220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
- 批准号:82301603
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant