CAREER: An Axiomatic Basis for Statistical Privacy

职业:统计隐私的公理基础

基本信息

  • 批准号:
    1054389
  • 负责人:
  • 金额:
    $ 42.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-02-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Statistical privacy is the art of releasing the datasets that provide useful information about population trends without revealing private information about any individual. Recent high-profile attacks on datasets released by AOL and Netflix demonstrate the need for rigorous application-specific privacy definitions to guide the anonymization of data. The goal of this project is to develop modular components, called privacy axioms, that can be chained together to create customized privacy definitions and anonymized data for statistical privacy applications. Such modularity can enable data curators without extensive expertise in statistical privacy to release anonymized data while providing privacy guarantees that are more interpretable and reliable.Intellectual merit: this project is designed to provide a unifying framework for statistical privacy that can bring about a deeper understanding of privacy issues and provide guidance for the safe anonymization and release of sensitive data. In addition to theoretical developments, this research plan also targets specific existing applications at Penn State and the U.S. Census Bureau.Broader impact: the systematic approach to privacy pursued by this project can enable access to and analysis of anonymized data in domains where access to data is otherwise heavily restricted. This project aims to build upon the investigator's prior experience with outreach programs such as the Summer Research Opportunities Program (SROP) by involving undergraduates in the proposed research. To prepare students for future work that requires analysis of anonymized data, this research is also being integrated into machine learning courses at Penn State.For further information see the project web site at the URL:http://www.cse.psu.edu/~dkifer/axiomatizingprivacy.html
统计隐私是释放数据集的艺术,这些数据集提供了有关人口趋势的有用信息,而无需透露有关任何个人的私人信息。 AOL和Netflix发布的对数据集的最新备受瞩目的攻击表明,需要进行严格的应用程序特定的隐私定义来指导数据的匿名化。该项目的目的是开发模块化组件,称为隐私公理,可以将其链接在一起以创建自定义的隐私定义和匿名数据,以用于统计隐私应用程序。这种模块化可以使数据策展人无需在统计隐私方面具有广泛的专业知识来释放匿名数据,同时提供更容易解释和可靠的隐私保证。IntellectualFure:该项目旨在为统计隐私提供统一的框架,以使对隐私问题有更深入的了解,并为安全的匿名和释放灵敏数据提供指导。除了理论发展外,该研究计划还针对宾夕法尼亚州立大学和美国人口普查局的特定现有应用程序。Boader的影响:该项目追求的系统性隐私方法可以使您可以访问和分析在域中访问数据的匿名数据,否则可以限制数据访问数据。该项目旨在通过参与拟议研究的本科生来建立研究者先前在外展计划(例如夏季研究机会计划(SROP))等外展计划的经验。为了使学生准备未来的工作,需要分析匿名数据,这项研究也已集成到宾夕法尼亚州立大学的机器学习课程中。有关更多信息,请参见url的项目网站:http://www.cse.psu.edu.edu/~dkifer/~dkifer/axiomatizationprivacyprivacy.html

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting Outliers in Data with Correlated Measures
Differentially Private Hierarchical Count-of-Counts Histograms
  • DOI:
    10.14778/3236187.3236202
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu-Hsuan Kuo;Cho-Chun Chiu;Daniel Kifer;Michael Hay;Ashwin Machanavajjhala
  • 通讯作者:
    Yu-Hsuan Kuo;Cho-Chun Chiu;Daniel Kifer;Michael Hay;Ashwin Machanavajjhala
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Kifer其他文献

Crawler
履带式
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenneth A. Ross;C. S. Jensen;R. Snodgrass;C. Dyreson;Spiros Skiadopoulos;Cristina Sirangelo;M. Larsgaard;G. Grahne;Daniel Kifer;Hans;H. Hinterberger;Alin Deutsch;Alan Nash;K. Wada;W. M. P. Aalst;C. Dyreson;P. Mitra;Ian H. Witten;Bing Liu;Charu C. Aggarwal;M. Tamer Özsu;Chimezie Ogbuji;Chintan Patel;Chunhua Weng;A. Wright;Amnon Shabo (Shvo);Dan Russler;R. A. Rocha;Yves A. Lussier;James L. Chen;Mohammed J. Zaki;Antonio Corral;Michael Vassilakopoulos;Dimitrios Gunopulos;Dietmar Wolfram;S. Venkatasubramanian;Michalis Vazirgiannis;Ian Davidson;Sunita Sarawagi;Liam Peyton;Gregory D. Speegle;Victor Vianu;Dirk Van Gucht;Opher Etzion;Francisco Curbera;AnnMarie Ericsson;Mikael Berndtsson;J. Mellin;P. Gray;Goce Trajcevski;Ouri Wolfson;Peter Scheuermann;Chitra Dorai;Michael Weiner;A. Borgida;J. Mylopoulos;Gottfried Vossen;A. Reuter;Val Tannen;S. Elnikety;Alan Fekete;L. Bertossi;F. Geerts;Wenfei Fan;T. Westerveld;Cathal Gurrin;Jaana Kekäläinen;Paavo Arvola;Marko Junkkari;Kyriakos Mouratidis;Jeffrey Xu Yu;Yong Yao;John F. Gehrke;S. Babu;N. Palmer;C. Leung;Michael W. Carroll;Aniruddha S. Gokhale;Mourad Ouzzani;Brahim Medjahed;Ahmed K. Elmagarmid;S. Manegold;Graham Cormode;Serguei Mankovskii;Donghui Zhang;Theo Härder;Wei Gao;Cheng Niu;Qing Li;Yu Yang;Payam Refaeilzadeh;Lei Tang;Huan Liu;Torben Bach Pedersen;Konstantinos Morfonios;Y. Ioannidis;Michael H. Böhlen;R. Snodgrass;Lei Chen
  • 通讯作者:
    Lei Chen
On the Tensor Representation and Algebraic Homomorphism of the Neural State Turing Machine
神经状态图灵机的张量表示与代数同态
  • DOI:
    10.48550/arxiv.2309.14690
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Mali;Alexander Ororbia;Daniel Kifer;L. Giles
  • 通讯作者:
    L. Giles
Investigating Symbolic Capabilities of Large Language Models
研究大型语言模型的符号功能
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neisarg Dave;Daniel Kifer;C. L. Giles;A. Mali
  • 通讯作者:
    A. Mali
Attacks on privacy and deFinetti's theorem
Connectionist Model
联结主义模型
  • DOI:
    10.1007/978-0-387-39940-9_2274
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    K. A. Ross;C. Jensen;R. Snodgrass;C. Dyreson;Spiros Skiadopoulos;Cristina Sirangelo;M. Larsgaard;G. Grahne;Daniel Kifer;H. Jacobsen;H. Hinterberger;Alin Deutsch;Alan Nash;K. Wada;Wil M.P. van der Aalst;C. Dyreson;P. Mitra;I. Witten;Bing Liu;C. Aggarwal;M. Tamer Özsu;Chimezie Ogbuji;Chintan Patel;C. Weng;Adam Wright;Amnon Shabo (Shvo);Dan Russler;R. Rocha;Y. Lussier;James L. Chen;Mohammed J. Zaki;Antonio Corral;M. Vassilakopoulos;D. Gunopulos;Dietmar Wolfram;S. Venkatasubramanian;M. Vazirgiannis;I. Davidson;Sunita Sarawagi;L. Peyton;Gregory D. Speegle;V. Vianu;D. V. Gucht;Opher Etzion;F. Curbera;AnnMarie Ericsson;Mikael Berndtsson;J. Mellin;P. Gray;Goce Trajcevski;O. Wolfson;P. Scheuermann;C. Dorai;M. Weiner;Alexander Borgida;J. Mylopoulos;G. Vossen;A. Reuter;V. Tannen;S. Elnikety;A. Fekete;L. Bertossi;F. Geerts;W. Fan;T. Westerveld;C. Gurrin;Jaana Kekäläinen;Paavo Arvola;Marko Junkkari;K. Mouratidis;J. Yu;Yong Yao;J. Gehrke;S. Babu;N. Palmer;C. Leung;Michael W. Carroll;A. Gokhale;M. Ouzzani;Brahim Medjahed;A. Elmagarmid;S. Manegold;Graham Cormode;Serguei Mankovskii;Donghui Zhang;T. Härder;Wei Gao;Cheng Niu;Qing Li;Yu Yang;Payam Refaeilzadeh;Lei Tang;Huan Liu;T. Pedersen;Konstantinos Morfonios;Y. Ioannidis;Michael H. Böhlen;R. Snodgrass;Lei Chen
  • 通讯作者:
    Lei Chen

Daniel Kifer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Kifer', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 42.95万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: New Techniques for Optimizing Accuracy in Differential Privacy Applications
SaTC:核心:小型:优化差异隐私应用准确性的新技术
  • 批准号:
    1931686
  • 财政年份:
    2019
  • 资助金额:
    $ 42.95万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Developing for Differential Privacy with Formal Methods and Counterexamples
SaTC:核心:媒介:使用正式方法和反例开发差异化隐私
  • 批准号:
    1702760
  • 财政年份:
    2017
  • 资助金额:
    $ 42.95万
  • 项目类别:
    Standard Grant
TWC SBES: Medium: Utility for Private Data Sharing in Social Science
TWC SBES:媒介:社会科学中私人数据共享的实用程序
  • 批准号:
    1228669
  • 财政年份:
    2012
  • 资助金额:
    $ 42.95万
  • 项目类别:
    Standard Grant

相似国自然基金

含跨期替代效应决策模型的公理化基础与应用
  • 批准号:
    71871212
  • 批准年份:
    2018
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
面向大规模定制的敏捷设施布置公理优化设计基础研究
  • 批准号:
    71671089
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
不等式基础理论公理化研究与不等式机器证明
  • 批准号:
    10901116
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
关于评价的应用基础理论公理化研究与构建
  • 批准号:
    70671067
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目
不确定信息处理的基础理论
  • 批准号:
    69675003
  • 批准年份:
    1996
  • 资助金额:
    9.0 万元
  • 项目类别:
    面上项目

相似海外基金

Theoretical study of language policy as a basis for harmonious communities
作为和谐社区基础的语言政策理论研究
  • 批准号:
    19K20986
  • 财政年份:
    2018
  • 资助金额:
    $ 42.95万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Developement and Open source code of all-electron mixed basis package program
全电子混合基础包程序开发及开源代码
  • 批准号:
    25289218
  • 财政年份:
    2013
  • 资助金额:
    $ 42.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a supporting tool for discussion with exploring basis focused on sharing processes of mature discussion
开发具有探索基础的讨论支持工具,重点分享成熟讨论的流程
  • 批准号:
    24650558
  • 财政年份:
    2012
  • 资助金额:
    $ 42.95万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Psychological basis of institutions and its evolutionary and cultural factors
制度的心理基础及其演化和文化因素
  • 批准号:
    18530482
  • 财政年份:
    2006
  • 资助金额:
    $ 42.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of elliptic integrable systems on the basis of CTM bootstrap approach
基于CTM引导方法的椭圆可积系统分析
  • 批准号:
    15540218
  • 财政年份:
    2003
  • 资助金额:
    $ 42.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了