REU Site:Visiting and Early Research Scholars' Experiences in Mathematics (VERSEIM-REU)

REU 网站:访问学者和早期研究学者的数学经历 (VERSEIM-REU)

基本信息

  • 批准号:
    2050412
  • 负责人:
  • 金额:
    $ 36.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The Visiting and Early Scholars’ Experiences in Mathematics Research Experiences for Undergraduates (VERSEIM-REU) is an intensive ten-week summer research program in applied and pure mathematics at Tufts University. For each of the next three years, nine VERSEIM scholars will be admitted and will be mentored by a team of faculty and advanced graduate students. VERSEIM scholars will meet weekly and informally discuss progress, questions, and articles, as well as participate in ongoing professional and academic development. They will present their work to the group in the middle of the program and in a closing ceremony. Scholars will also meet regularly with other students for social and cohort-building activities. The experience will provide participants knowledge and skills to navigate graduate school and careers in the mathematical sciences. The program will recruit students from groups underrepresented in mathematics in partnership with the Tufts Visiting and Early Research Scholars' Experience (VERSE) program.The program will introduce the VERSEIM scholars early in their mathematical education to engaging projects designed to develop their talents in research. Though some of the underlying questions, based on ongoing research of the faculty involved, are beyond the level of most undergraduate students, the Tufts team has a great deal of experience in isolating specific questions and research tasks that excite students' imagination and allow them to explore the problems experimentally. Scholars’ experimental findings would lead to conjectures and further explorations, some of which will yield generalizable conclusions and proofs for the original problems. Scholars will choose among three research topics in fields including number theory (patterns in the last digits of prime numbers), geometric group theory (computational aspects of geometric group theory), pure, applied, and numerical harmonic analysis (groups and integral geometry, frame theory), machine learning (analysis of high-dimensional molecular dynamics simulations), mathematical neuroscience (functional significance of brain rhythms), numerical analysis (numerical methods for PDEs), mathematical ecology (predator-prey dynamics in fluctuating environments), and tomography (algorithms and theory in limited data tomography).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
来访和早期学者在本科生数学研究经验(Verseim-reu)的经验是一项为期十周的夏季研究计划,在塔夫茨大学的应用和纯数学方面。在接下来的三年中,每个人都将被录取九个诗歌学者,并将由一支由教职员工和高级研究生组成。 Verseim的学者将每周召开,并非正式地讨论进度,问题和文章,并参与正在进行的专业和学术发展。他们将在节目中间和闭幕式中向小组展示他们的作品。学者还将定期与其他学生开会,进行社交和队列建设活动。经验将为参与者的知识和技能提供数学科学领域的研究生和职业的知识和技能。该计划将与塔夫茨(Tufts)参观和早期研究学者的经验(诗歌)计划合作,招募数学领域的学生。尽管基于对所涉及的教师的持续研究的一些基本问题超出了大多数本科生的水平,但塔夫特团队在隔离特定问题和研究任务方面具有丰富的经验,这些问题和研究任务激发了学生的想象力,并让他们可以实验探索这些问题。学者的实验发现将导致猜想和进一步的探索,其中一些将为原始问题提供可普遍的结论和证明。 Scholars will choose among three research topics in fields including number theory (patterns in the last digits of prime numbers), geometric group theory (computational aspects of geometric group theory), pure, applied, and numerical harmonic analysis (groups and integral geometry, frame theory), machine learning (analysis of high-dimensional molecular dynamics simulations), mathematical neuroscience (functional significance of brain rhythms), numerical analysis (PDE的数值方法),数学生态学(波动环境中的捕食者 - 纯化动力学)和层析成像(有限的数据断层扫描中的算法和理论)。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子和宽广的影响来评估Criteria criteria criteria criteria诚实地认为,通过评估诚实的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kasso Okoudjou其他文献

Kasso Okoudjou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kasso Okoudjou', 18)}}的其他基金

Collaborative Research: New perspectives from applied and computational time-frequency analysis
合作研究:应用和计算时频分析的新视角
  • 批准号:
    2309652
  • 财政年份:
    2023
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
  • 批准号:
    2205771
  • 财政年份:
    2022
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
Two Conjectures on Finite Gabor Systems
有限Gabor系统的两个猜想
  • 批准号:
    2050187
  • 财政年份:
    2020
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
Two Conjectures on Finite Gabor Systems
有限Gabor系统的两个猜想
  • 批准号:
    1814253
  • 财政年份:
    2018
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
February Fourier Talks
二月傅里叶讲座
  • 批准号:
    1551897
  • 财政年份:
    2016
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Continuing Grant
ORTHOGONAL POLYNOMIALS AND SPECIAL FUNCTIONS SUMMER SCHOOL
正交多项式和特殊函数暑期学校
  • 批准号:
    1600903
  • 财政年份:
    2016
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
REU Site: Mathematics, Applied Mathematics, and Statistics Research Experience for Undergraduates (MAPS-REU)
REU 网站:本科生数学、应用数学和统计学研究经验 (MAPS-REU)
  • 批准号:
    1359307
  • 财政年份:
    2014
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Continuing Grant
February Fourier Talks, 2014, February 20-21, 2014
2014 年二月傅立叶讲座,2014 年 2 月 20-21 日
  • 批准号:
    1360628
  • 财政年份:
    2014
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
February Fourier Talks, 2013
2013 年 2 月傅里叶讲座
  • 批准号:
    1261566
  • 财政年份:
    2013
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
February Fourier Talks, 2012
2012 年 2 月傅里叶讲座
  • 批准号:
    1155922
  • 财政年份:
    2012
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant

相似国自然基金

硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
  • 批准号:
    82371901
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
  • 批准号:
    82371616
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
中国恐龙骨骼化石时空分布综合研究
  • 批准号:
    42372030
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
  • 批准号:
    82370790
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
计算病理学技术在法医学自动化硅藻检验及溺水地点推断中的应用研究
  • 批准号:
    82371902
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Visiting and Early Research Scholars' Experiences in Mathematics (VERSEIM-REU)
REU 网站:访问学者和早期研究学者的数学经历 (VERSEIM-REU)
  • 批准号:
    2349058
  • 财政年份:
    2024
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
AppalTRuST Career Enhancement Core
AppalTrust 职业提升核心
  • 批准号:
    10665324
  • 财政年份:
    2023
  • 资助金额:
    $ 36.43万
  • 项目类别:
Music4Pain Network: A research network to advance the study of mechanisms underlying the effects of music and music-based interventions on pain.
Music4Pain Network:一个研究网络,旨在推进音乐和基于音乐的疼痛干预措施的影响机制的研究。
  • 批准号:
    10764417
  • 财政年份:
    2023
  • 资助金额:
    $ 36.43万
  • 项目类别:
Facility Management, Maintenance and Operation Core
设施管理、维护和运营核心
  • 批准号:
    10793908
  • 财政年份:
    2023
  • 资助金额:
    $ 36.43万
  • 项目类别:
Effects of Family Caregiver Availability and Capacity on Home Health Care for Older Adults with Alzheimer's Disease and Related Dementias
家庭护理人员的可用性和能力对患有阿尔茨海默病和相关痴呆症的老年人的家庭保健的影响
  • 批准号:
    10571079
  • 财政年份:
    2023
  • 资助金额:
    $ 36.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了