Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
基本信息
- 批准号:2205771
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The underlying theoretical mechanisms supporting the digital world that our societies benefit from today result from sophisticated mathematics developed over many centuries. Among the mathematical tools employed in modern signal processing, Fourier analysis stands as one of the key players. In particular, the methods developed in Fourier analysis are instrumental in decomposing complex signals into their elementary building blocks. This project aims to push the current understanding of several modern tools related to Fourier analysis in applications such as data science, signal processing, and quantum information theory beyond their current frontiers. Moreover, this project's educational component will allow the investigators to continue training students in the underlying mathematics fields it covers. The investigators will also integrate the outcomes of this research program into graduate and advanced undergraduate courses offered at their respective institutions. The project aims to solve some fundamental and unresolved problems in time-frequency analysis, especially the Heil-Ramanathan-Topiwala (HRT) conjecture (which asserts that every finite collection of time-frequency shifts of a square-integrable function must be linearly independent) and several other related unresolved problems. These problems arise in time-frequency analysis and are at the intersection of many areas of mathematics, applied mathematics, and even engineering. The investigators will attack these problems from a multi-field approach, bringing to bear techniques from abstract, applied computational harmonic analysis, ergodic theory, Lie group, Lie algebra, complex, functional, and real analysis. This research will build on recent successes of applied and pure harmonic analysis, which include the wavelet-based JPEG standard, advances in phaseless reconstruction, and the fundamental role played by Gabor (or Weyl-Heisenberg) systems in the detection of the gravitational waves. A standard paradigm in many of these applications consists of decomposing arbitrary signals into redundant elementary building blocks. While the redundancy of these systems might seem counterintuitive for their use, it is nonetheless responsible for the robustness of certain algorithms for data transmission using unreliable channels. It will play a vital role in noise reduction algorithms. Wavelets and Gabor systems are examples of redundant systems, and such systems can represent many natural signals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
支持当今我们的社会受益的数字世界的基本理论机制源于多个世纪以来发展的复杂数学。在现代信号处理中使用的数学工具中,傅里叶分析是关键人物之一。特别是,傅立叶分析中开发的方法有助于将复杂信号分解为其基本构建块。该项目旨在推动目前对数据科学、信号处理和量子信息理论等应用中与傅里叶分析相关的几种现代工具的理解,超越其当前的前沿。此外,该项目的教育部分将使研究人员能够继续在其所涵盖的基础数学领域对学生进行培训。研究人员还将将该研究项目的成果整合到各自机构提供的研究生和高级本科课程中。该项目旨在解决时频分析中一些基本且尚未解决的问题,特别是 Heil-Ramanathan-Topiwala (HRT) 猜想(该猜想断言平方可积函数的时频偏移的每个有限集合必须是线性独立的)以及其他几个相关的未解决的问题。这些问题出现在时频分析中,并且是数学、应用数学甚至工程学许多领域的交叉点。研究人员将从多领域方法来解决这些问题,运用抽象技术、应用计算调和分析、遍历理论、李群、李代数、复分析、泛函分析和实分析。这项研究将建立在最近成功的应用和纯谐波分析的基础上,其中包括基于小波的 JPEG 标准、无相重建的进展以及 Gabor(或 Weyl-Heisenberg)系统在引力波探测中发挥的基本作用。许多此类应用中的标准范例包括将任意信号分解为冗余的基本构建块。虽然这些系统的冗余对其使用来说似乎违反直觉,但它仍然对使用不可靠通道进行数据传输的某些算法的鲁棒性负责。它将在降噪算法中发挥至关重要的作用。小波和 Gabor 系统是冗余系统的例子,此类系统可以代表许多自然信号。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kasso Okoudjou其他文献
Kasso Okoudjou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kasso Okoudjou', 18)}}的其他基金
Collaborative Research: New perspectives from applied and computational time-frequency analysis
合作研究:应用和计算时频分析的新视角
- 批准号:
2309652 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
REU Site:Visiting and Early Research Scholars' Experiences in Mathematics (VERSEIM-REU)
REU 网站:访问学者和早期研究学者的数学经历 (VERSEIM-REU)
- 批准号:
2050412 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Two Conjectures on Finite Gabor Systems
有限Gabor系统的两个猜想
- 批准号:
2050187 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Two Conjectures on Finite Gabor Systems
有限Gabor系统的两个猜想
- 批准号:
1814253 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
ORTHOGONAL POLYNOMIALS AND SPECIAL FUNCTIONS SUMMER SCHOOL
正交多项式和特殊函数暑期学校
- 批准号:
1600903 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
REU Site: Mathematics, Applied Mathematics, and Statistics Research Experience for Undergraduates (MAPS-REU)
REU 网站:本科生数学、应用数学和统计学研究经验 (MAPS-REU)
- 批准号:
1359307 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
February Fourier Talks, 2014, February 20-21, 2014
2014 年二月傅立叶讲座,2014 年 2 月 20-21 日
- 批准号:
1360628 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
基于图机器学习的学科交叉主题识别与预测研究
- 批准号:72374202
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
基于弱信号时效网络演化分析的变革性科技创新主题早期识别方法研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
知识驱动的神经主题模型方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
主题与策略感知的在线心理支持自动问答研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于情感与主题预测的网帖评论生成技术研究
- 批准号:
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
- 批准号:
2205852 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SBP: Scientific topics and careers at the intersection: an algorithmic approach
合作研究:SBP:交叉点上的科学主题和职业:算法方法
- 批准号:
2152288 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SBP: Scientific topics and careers at the intersection: an algorithmic approach
合作研究:SBP:交叉点上的科学主题和职业:算法方法
- 批准号:
2152303 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Interactive Online Support for Open-Ended Problem Solving Spanning Science Practices and Domain Topics
协作研究:跨科学实践和领域主题的开放式问题解决的交互式在线支持
- 批准号:
1726699 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Interactive Online Support for Open-Ended Problem Solving Spanning Science Practices and Domain Topics
协作研究:跨科学实践和领域主题的开放式问题解决的交互式在线支持
- 批准号:
1726856 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant