Improving Weather Forecasting through non-Gaussian Data Assimilation with Machine Learning

通过机器学习的非高斯数据同化改进天气预报

基本信息

  • 批准号:
    2033405
  • 负责人:
  • 金额:
    $ 58.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The research project is to advance techniques for using a mathematical discipline to optimally combine theory with observations to improve the accuracy of weather forecasts. The team will use different forms of machine learning mechanism to detect changes in the behavior of moisture fields in the atmosphere such that the new techniques are able to change parts of the weather prediction scheme to better capture these fields in different locations and at different times. To achieve the research goal, a large amount of observations and model results is required to train computers to detect moisture changes. The research will investigate how much data are needed to reliably detect changes through the machine learning techniques. As part of this research project, the research team will develop a website for the research community to view atmospheric moisture changes in the past 24 hours. This research will also test how well a new component of the weather prediction scheme works when the machine learning techniques have detected moisture changes from its normal behavior. The project will also involve training a new scientist to learn the latest research method. The research team will investigate the ability of machine learning techniques to detect changes away from Gaussian behavior for the moisture fields and to be capable to switch the cost function in variational data assimilation between Gaussian and non-Gaussian. The scheme is important to ensure that the model-observation errors are being model consistently. The error changes are commonly assumed to be toward lognormal; recent work has indicated that the behavior of moisture fields has another probability density function—the reverse lognormal. This distribution has a right skewness and enables analysis to increase the moisture state if the background is too dry. Using the proper type of error distribution schemes will aid not only cloud prediction but also cloud retention in forecast models after the data assimilation scheme has finished. This team will also investigate a new ensemble smoother, as well as non-Gaussian versions of the Maximum Likelihood Ensemble Filter as a more consistent ensemble filter for hybrid data assimilation schemes, especially for the lognormal and reverse lognormal behavior. In addition, the skewness of the moisture field at different locations and heights will be displayed at the team’s website for the general public and forecasters to view how the moisture distribution is changing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将推进使用数学学科的技术,以最佳的方式结合理论,以使天气预报的Y进行抑制。在不同位置和不同的位置捕获这些领域的天气预测。研究团队将在过去24小时内供研究社区查看Atsostheric水分的变化。行为也将培训新的科学家学习最新的研究团队。模型的误差是Beinin模型的一致性,通常认为误差是对数的另一个概率密度函数数据同化方案完成后,该团队还将研究最大似然合奏的新整合版本,因为更浓厚的集合过滤器,以用于混合数据同化。将在网站的团队中展示不同的地点和高度,以供公众和预报员进行水分分配的变化。该奖项反映了NSF'SF'SFly fly Mission,并通过基金会的智力进行了评估,并获得了支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lognormal and Mixed Gaussian–Lognormal Kalman Filters
对数正态和混合高斯 - 对数正态卡尔曼滤波器
  • DOI:
    10.1175/mwr-d-22-0072.1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Fletcher, Steven J.;Zupanski, Milija;Goodliff, Michael R.;Kliewer, Anton J.;Jones, Andrew S.;Forsythe, John M.;Wu, Ting-Chi;Hossen, Md. Jakir;Van Loon, Senne
  • 通讯作者:
    Van Loon, Senne
Non‐Gaussian Detection Using Machine Learning With Data Assimilation Applications
使用机器学习和数据同化应用进行非高斯检测
  • DOI:
    10.1029/2021ea001908
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Goodliff, Michael R.;Fletcher, Steven J.;Kliewer, Anton J.;Jones, Andrew S.;Forsythe, John M.
  • 通讯作者:
    Forsythe, John M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Fletcher其他文献

Annalisa Camporeale, Francesca Marino*, XXX* di Heymans, Patrick
安娜丽莎·坎波雷亚莱 (Annalisa Camporeale)、弗朗西斯卡·马里诺 (Francesca Marino)*、帕特里克·海曼斯 (XXX* di Heymans)
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Annalisa Camporeale;F. Marino;Anna;Paolo Carai;Sara Fornero;Steven Fletcher;Brent D. G. Page;Patrick Gunning;M. Forni;Roberto Chiarle;Mara;Morello;O. Jensen;R. Levi;Stephane Heymans;Valeria Poli
  • 通讯作者:
    Valeria Poli
A novel BRD4 inhibitor CA2 suppresses MM cell proliferation in an orthotopic myeloma mouse model.
一种新型 BRD4 抑制剂 CA2 可抑制原位骨髓瘤小鼠模型中的 MM 细胞增殖。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Natsuki Imaysohi;Makoto Yoshioka;Susumu Nakata;Jay Chauhan;Yoko Kado;Yuki Toda;Steven Fletcher;Jeffrey Strovel;Kazuyuki Takata;and Eishi Ashihara.
  • 通讯作者:
    and Eishi Ashihara.
造血器悪性腫瘍に対するWnt/β-cateninシグナルを標的とした創薬研究
针对血液恶性肿瘤 Wnt/β-catenin 信号的药物发现研究
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Natsuki Imaysohi;Makoto Yoshioka;Susumu Nakata;Jay Chauhan;Yoko Kado;Yuki Toda;Steven Fletcher;Jeffrey Strovel;Kazuyuki Takata;and Eishi Ashihara.;芦原英司
  • 通讯作者:
    芦原英司

Steven Fletcher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Fletcher', 18)}}的其他基金

Maker Education and Community Building as Tools to Recruit, Develop, and Retain STEM Teachers
创客教育和社区建设作为招募、培养和留住 STEM 教师的工具
  • 批准号:
    1950312
  • 财政年份:
    2020
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Continuing Grant
The Eighth International Symposium on Data Assimilation (ISDA); Fort Collins, Colorado; June 8-12, 2020
第八届资料同化国际研讨会(ISDA);
  • 批准号:
    2011670
  • 财政年份:
    2020
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Standard Grant
Establishing Links between Atmospheric Dynamics and Non-Gaussian Distributions and Quantifying Their Effects on Numerical Weather Prediction
建立大气动力学和非高斯分布之间的联系并量化它们对数值天气预报的影响
  • 批准号:
    1738206
  • 财政年份:
    2017
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Standard Grant
Noyce Phase II Monitoring & Evaluation at St. Edward's University
诺伊斯二期监测
  • 批准号:
    1439817
  • 财政年份:
    2014
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Standard Grant
Analyzing the Impacts of Non-Gaussian Errors in Gaussian Data Assimilation Systems
分析高斯数据同化系统中非高斯误差的影响
  • 批准号:
    1038790
  • 财政年份:
    2012
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Continuing Grant
The St. Edward's University Robert Noyce Teacher Scholarship Program
圣爱德华大学罗伯特·诺伊斯教师奖学金计划
  • 批准号:
    0833123
  • 财政年份:
    2008
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Standard Grant

相似国自然基金

基于天气画像和地基云图的光伏功率超短期预测研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于因果推断和物理引导的面向天气预报与气候预测的深度学习理论算法及可解释性研究
  • 批准号:
    U2142211
  • 批准年份:
    2021
  • 资助金额:
    260 万元
  • 项目类别:
    专项基金项目
基于耦合气候模式的长三角地区冬季霾的动力-统计降尺度预测研究
  • 批准号:
    41805001
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
提高风电功率预测精度关键技术研究
  • 批准号:
    51866014
  • 批准年份:
    2018
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
基于雷达探测的典型气象条件下飞机尾流特征参数反演及短时行为预测技术
  • 批准号:
    61771479
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
  • 批准号:
    2320148
  • 财政年份:
    2023
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
  • 批准号:
    2320147
  • 财政年份:
    2023
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Standard Grant
CAREER: Score-Based Diffusion Models for Probabilistic Forecasting of Weather and Climate
职业:用于天气和气候概率预测的基于分数的扩散模型
  • 批准号:
    2238375
  • 财政年份:
    2023
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Standard Grant
Applying Year of Polar Prediction-Southern Hemisphere (YOPP-SH) Targeted Observing Periods to Advance Winter Numerical Weather Forecasting for the U.S. Antarctic Program
应用极地预测年 - 南半球 (YOPP-SH) 目标观测周期推进美国南极计划的冬季数值天气预报
  • 批准号:
    2205398
  • 财政年份:
    2022
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Standard Grant
Forecasting Migraine Attacks
预测偏头痛发作
  • 批准号:
    10552024
  • 财政年份:
    2022
  • 资助金额:
    $ 58.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了