Improving Weather Forecasting through non-Gaussian Data Assimilation with Machine Learning
通过机器学习的非高斯数据同化改进天气预报
基本信息
- 批准号:2033405
- 负责人:
- 金额:$ 58.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research project is to advance techniques for using a mathematical discipline to optimally combine theory with observations to improve the accuracy of weather forecasts. The team will use different forms of machine learning mechanism to detect changes in the behavior of moisture fields in the atmosphere such that the new techniques are able to change parts of the weather prediction scheme to better capture these fields in different locations and at different times. To achieve the research goal, a large amount of observations and model results is required to train computers to detect moisture changes. The research will investigate how much data are needed to reliably detect changes through the machine learning techniques. As part of this research project, the research team will develop a website for the research community to view atmospheric moisture changes in the past 24 hours. This research will also test how well a new component of the weather prediction scheme works when the machine learning techniques have detected moisture changes from its normal behavior. The project will also involve training a new scientist to learn the latest research method. The research team will investigate the ability of machine learning techniques to detect changes away from Gaussian behavior for the moisture fields and to be capable to switch the cost function in variational data assimilation between Gaussian and non-Gaussian. The scheme is important to ensure that the model-observation errors are being model consistently. The error changes are commonly assumed to be toward lognormal; recent work has indicated that the behavior of moisture fields has another probability density function—the reverse lognormal. This distribution has a right skewness and enables analysis to increase the moisture state if the background is too dry. Using the proper type of error distribution schemes will aid not only cloud prediction but also cloud retention in forecast models after the data assimilation scheme has finished. This team will also investigate a new ensemble smoother, as well as non-Gaussian versions of the Maximum Likelihood Ensemble Filter as a more consistent ensemble filter for hybrid data assimilation schemes, especially for the lognormal and reverse lognormal behavior. In addition, the skewness of the moisture field at different locations and heights will be displayed at the team’s website for the general public and forecasters to view how the moisture distribution is changing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目是为了推进使用数学学科的技术,以最佳的理论与观测值结合,以提高天气预报的准确性。该团队将使用不同形式的机器学习机制来检测大气中水分场行为的变化,从而使新技术能够更改天气预测方案的一部分,以更好地在不同位置和不同时间捕获这些领域。为了实现研究目标,需要大量观察结果和模型结果才能训练计算机以检测水分的变化。该研究将研究需要多少数据来可靠地通过机器学习技术检测变化。作为该研究项目的一部分,研究团队将为研究界开发一个网站,以查看过去24小时内大气水分的变化。这项研究还将测试当机器学习技术检测到水分从其正常行为变化时,天气预测方案的新组成部分的工作状况如何。该项目还将涉及培训新科学家学习最新的研究方法。研究团队将研究机器学习技术检测到水分领域高斯行为的变化的能力,并能够在高斯和非高斯之间的变异数据同化中切换成本函数。该方案对于确保模型观察误差始终如一地模型很重要。误差变化通常被认为是对数正态的。最近的工作表明,水分场的行为具有另一个概率密度函数 - 反向对数正态。该分布具有正确的偏度,如果背景太干,可以分析可以增加水分状态。在数据同化方案完成后,使用适当的错误分布方案不仅有助于云预测,还可以帮助预测模型中的云保留。该团队还将调查最大似然集合过滤器的新的合奏更加顺畅,以及非高斯版本,作为混合数据同化方案的更一致的集合过滤器,尤其是对于数字正态和反向logNormoral的行为。此外,在团队的网站上,将向公众和预报员展示水分场在不同位置和高度的偏度,以查看水分分布如何发生变化。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查审查标准来通过评估来诚实地诚实地支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lognormal and Mixed Gaussian–Lognormal Kalman Filters
对数正态和混合高斯 - 对数正态卡尔曼滤波器
- DOI:10.1175/mwr-d-22-0072.1
- 发表时间:2023
- 期刊:
- 影响因子:3.2
- 作者:Fletcher, Steven J.;Zupanski, Milija;Goodliff, Michael R.;Kliewer, Anton J.;Jones, Andrew S.;Forsythe, John M.;Wu, Ting-Chi;Hossen, Md. Jakir;Van Loon, Senne
- 通讯作者:Van Loon, Senne
Non‐Gaussian Detection Using Machine Learning With Data Assimilation Applications
使用机器学习和数据同化应用进行非高斯检测
- DOI:10.1029/2021ea001908
- 发表时间:2022
- 期刊:
- 影响因子:3.1
- 作者:Goodliff, Michael R.;Fletcher, Steven J.;Kliewer, Anton J.;Jones, Andrew S.;Forsythe, John M.
- 通讯作者:Forsythe, John M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Fletcher其他文献
Annalisa Camporeale, Francesca Marino*, XXX* di Heymans, Patrick
安娜丽莎·坎波雷亚莱 (Annalisa Camporeale)、弗朗西斯卡·马里诺 (Francesca Marino)*、帕特里克·海曼斯 (XXX* di Heymans)
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Annalisa Camporeale;F. Marino;Anna;Paolo Carai;Sara Fornero;Steven Fletcher;Brent D. G. Page;Patrick Gunning;M. Forni;Roberto Chiarle;Mara;Morello;O. Jensen;R. Levi;Stephane Heymans;Valeria Poli - 通讯作者:
Valeria Poli
A novel BRD4 inhibitor CA2 suppresses MM cell proliferation in an orthotopic myeloma mouse model.
一种新型 BRD4 抑制剂 CA2 可抑制原位骨髓瘤小鼠模型中的 MM 细胞增殖。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Natsuki Imaysohi;Makoto Yoshioka;Susumu Nakata;Jay Chauhan;Yoko Kado;Yuki Toda;Steven Fletcher;Jeffrey Strovel;Kazuyuki Takata;and Eishi Ashihara. - 通讯作者:
and Eishi Ashihara.
Computational control of gene expression in individual yeast using reactive microscopy
- DOI:
10.1016/j.bpj.2022.11.1562 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Zachary Fox;Steven Fletcher;Jakob Ruess;Gregory Batt - 通讯作者:
Gregory Batt
Maryland Academy for Pharmacy Success (MAPS) – Med Chem Winter is Coming
- DOI:
10.1016/j.ajpe.2023.100193 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:
- 作者:
Andrew Coop;Steven Fletcher;Fengtian Xue;Jace W. Jones;Daniel Deredge;Shannon R. Tucker;George Anagnostou - 通讯作者:
George Anagnostou
造血器悪性腫瘍に対するWnt/β-cateninシグナルを標的とした創薬研究
针对血液恶性肿瘤 Wnt/β-catenin 信号的药物发现研究
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Natsuki Imaysohi;Makoto Yoshioka;Susumu Nakata;Jay Chauhan;Yoko Kado;Yuki Toda;Steven Fletcher;Jeffrey Strovel;Kazuyuki Takata;and Eishi Ashihara.;芦原英司 - 通讯作者:
芦原英司
Steven Fletcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Fletcher', 18)}}的其他基金
Maker Education and Community Building as Tools to Recruit, Develop, and Retain STEM Teachers
创客教育和社区建设作为招募、培养和留住 STEM 教师的工具
- 批准号:
1950312 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Continuing Grant
The Eighth International Symposium on Data Assimilation (ISDA); Fort Collins, Colorado; June 8-12, 2020
第八届资料同化国际研讨会(ISDA);
- 批准号:
2011670 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Establishing Links between Atmospheric Dynamics and Non-Gaussian Distributions and Quantifying Their Effects on Numerical Weather Prediction
建立大气动力学和非高斯分布之间的联系并量化它们对数值天气预报的影响
- 批准号:
1738206 - 财政年份:2017
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Noyce Phase II Monitoring & Evaluation at St. Edward's University
诺伊斯二期监测
- 批准号:
1439817 - 财政年份:2014
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Analyzing the Impacts of Non-Gaussian Errors in Gaussian Data Assimilation Systems
分析高斯数据同化系统中非高斯误差的影响
- 批准号:
1038790 - 财政年份:2012
- 资助金额:
$ 58.25万 - 项目类别:
Continuing Grant
The St. Edward's University Robert Noyce Teacher Scholarship Program
圣爱德华大学罗伯特·诺伊斯教师奖学金计划
- 批准号:
0833123 - 财政年份:2008
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
相似国自然基金
基于天气画像和地基云图的光伏功率超短期预测研究
- 批准号:62206062
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于天气画像和地基云图的光伏功率超短期预测研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于因果推断和物理引导的面向天气预报与气候预测的深度学习理论算法及可解释性研究
- 批准号:U2142211
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:专项基金项目
基于耦合气候模式的长三角地区冬季霾的动力-统计降尺度预测研究
- 批准号:41805001
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
提高风电功率预测精度关键技术研究
- 批准号:51866014
- 批准年份:2018
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
- 批准号:
2320148 - 财政年份:2023
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
- 批准号:
2320147 - 财政年份:2023
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
CAREER: Score-Based Diffusion Models for Probabilistic Forecasting of Weather and Climate
职业:用于天气和气候概率预测的基于分数的扩散模型
- 批准号:
2238375 - 财政年份:2023
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Applying Year of Polar Prediction-Southern Hemisphere (YOPP-SH) Targeted Observing Periods to Advance Winter Numerical Weather Forecasting for the U.S. Antarctic Program
应用极地预测年 - 南半球 (YOPP-SH) 目标观测周期推进美国南极计划的冬季数值天气预报
- 批准号:
2205398 - 财政年份:2022
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Next Generation, Physics-Inspired AI for Space Weather Forecasting
用于空间天气预报的下一代物理启发人工智能
- 批准号:
NE/W009129/1 - 财政年份:2022
- 资助金额:
$ 58.25万 - 项目类别:
Fellowship