Next Generation, Physics-Inspired AI for Space Weather Forecasting
用于空间天气预报的下一代物理启发人工智能
基本信息
- 批准号:NE/W009129/1
- 负责人:
- 金额:$ 66.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Space weather describes the variability of conditions in near-Earth space. One of the primary ways in which space weather can impact society is through the generation of anomalous currents (termed Geomagnetically Induced Currents, or GICs) in power networks and pipelines on the ground. These GICs can accelerate the ageing of systems, or more critically lead to the immediate failure of components such as power transformers. This research will take a leap forward in understanding and predicting when we are at risk of suffering large GICs on the ground.GICs are driven by rapid changes in the Earth's magnetic field, and there are a range of phenomena in near-Earth space that are responsible, but one of the most important is the magnetospheric substorm. During a substorm, interactions between the magnetic field of the Earth and the incident solar wind results in the transfer of energy. This additional energy is principally stored in plasma and magnetic field energy on the nightside of a planet in a region known as the magnetotail. Energy is stored until the system reaches the limit of stability, at which point the energy is explosively released, again through the process of magnetic reconnection. This leads to observable phenomena such as the aurora. However, this process can have dire space weather consequences, causing extreme ionospheric currents and posing risks to satellites and other infrastructure, yet even our most sophisticated methods struggle to predict when it will occur.Understanding and forecasting magnetic field variability is a hugely difficult problem when the myriad of sporadic and localised processes at the start of a magnetosphere substorm are poorly understood. One of the fundamental issues is the scale of the system. The processes involved are sporadic and localised, and the domain in which they could operate is huge. The aim of this fellowship is to understand the processes and instabilities by which the magnetosphere becomes unstable, and use this to generate cutting-edge, physics-inspired space weather forecasting models.I will accurately and robustly process huge volumes of data from several missions at the Earth using 'big data' techniques to characterize and predict the conditions under which the substorm is likely to occur. I will develop Bayesian Monte Carlo methods to estimate their spatial and temporal scales and determine causality. I will then use this understanding to generate cutting-edge machine learning models of when and where substorms will occur, as well as the properties and location of the auroral oval. I will then put this together to create a physics-inspired model of forecasting geomagnetic perturbations. This is necessary to provide precise and reliable predictions of when regions are at risk of dangerous GICs. The physics-inspired process will ensure that the model extrapolations to extreme conditions are more reliable than 'black box' extrapolations.During the course of this fellowship I will collaborate with world leading experts on plasma stability (MSSL) and magnetotail dynamics (Michigan), utilizing cutting edge global models (Michigan) to inform state-of-the-art machine learning models. I will then create robust and reliable models for the benefit of stakeholders (Met Office).
空间天气描述了近地空间条件的变化。太空天气影响社会的主要方式之一是在地面电力网络和管道中产生异常电流(称为地磁感应电流,或 GIC)。这些 GIC 会加速系统的老化,或更严重的是导致电力变压器等组件立即失效。这项研究将在理解和预测我们何时面临地面上遭受大型 GIC 的风险方面迈出一大步。GIC 是由地球磁场的快速变化驱动的,近地空间中存在一系列现象,负责任的,但最重要的之一是磁层亚暴。在亚暴期间,地球磁场与入射太阳风之间的相互作用导致能量转移。这种额外的能量主要存储在行星背面磁尾区域的等离子体和磁场能量中。能量被存储,直到系统达到稳定极限,此时能量再次通过磁重联过程爆炸性释放。这导致了诸如极光之类的可观测现象。然而,这个过程可能会产生可怕的空间天气后果,导致极端的电离层电流并对卫星和其他基础设施构成风险,但即使我们最复杂的方法也很难预测它何时发生。当磁场变化发生时,理解和预测磁场变化是一个非常困难的问题。人们对磁层亚暴开始时的无数零星和局部过程知之甚少。基本问题之一是系统的规模。所涉及的流程是零星的和本地化的,并且它们可以操作的领域是巨大的。该奖学金的目的是了解磁层变得不稳定的过程和不稳定性,并利用它来生成尖端的、受物理启发的空间天气预报模型。我将准确而稳健地处理来自多个任务的大量数据地球利用“大数据”技术来描述和预测亚暴可能发生的条件。我将开发贝叶斯蒙特卡罗方法来估计它们的空间和时间尺度并确定因果关系。然后,我将利用这种理解来生成关于亚暴何时何地发生以及极光椭圆形的属性和位置的尖端机器学习模型。然后,我将把它们放在一起,创建一个预测地磁扰动的物理启发模型。这对于准确可靠地预测区域何时面临危险的 GIC 风险是必要的。受物理启发的过程将确保对极端条件的模型外推比“黑匣子”外推更可靠。在本研究期间,我将与等离子体稳定性(MSSL)和磁尾动力学(密歇根州)方面的世界领先专家合作,利用尖端的全球模型(密歇根州)来为最先进的机器学习模型提供信息。然后,我将创建强大且可靠的模型,以造福利益相关者(气象局)。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sudden Commencements and Geomagnetically Induced Currents in New Zealand: Correlations and Dependance
新西兰的突然开始和地磁感应电流:相关性和依赖性
- DOI:10.1029/2023sw003731
- 发表时间:2024
- 期刊:
- 影响因子:3.7
- 作者:Smith A
- 通讯作者:Smith A
Extreme Value Analysis of Ground Magnetometer Observations at Valentia Observatory, Ireland
爱尔兰瓦伦蒂亚天文台地面磁力计观测的极值分析
- DOI:10.1029/2023sw003565
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Fogg A
- 通讯作者:Fogg A
Using machine learning to diagnose relativistic electron distributions in the Van Allen radiation belts
使用机器学习来诊断范艾伦辐射带中的相对论电子分布
- DOI:10.1093/rasti/rzad035
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Killey S
- 通讯作者:Killey S
Automatic Encoding of Unlabeled Two Dimensional Data Enabling Similarity Searches: Electron Diffusion Regions and Auroral Arcs
- DOI:10.1029/2023ja032096
- 发表时间:2024-01-01
- 期刊:
- 影响因子:2.8
- 作者:Smith,A. W.;Rae,I. J.;Koul,A.
- 通讯作者:Koul,A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Smith其他文献
Preventing deafness—an achievable challenge. The WHO perspective
- DOI:
10.1016/s0531-5131(03)00960-9 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Andrew Smith - 通讯作者:
Andrew Smith
A systematic review of the role of penicillin versus penicillin plus metronidazole in the management of peritonsillar abscess
青霉素与青霉素联合甲硝唑在扁桃体周围脓肿治疗中作用的系统评价
- DOI:
10.1017/s0022215123000804 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Christy M. Moen;K. Paramjothy;A. Williamson;H. Coleman;Xin Lou;Andrew Smith;C. Douglas - 通讯作者:
C. Douglas
Exploring the use of extended release opioids at shortened dosing intervals in people with chronic pain and high risk medication or substance use
探索在患有慢性疼痛和高风险药物或物质使用的人群中以缩短的给药间隔使用缓释阿片类药物
- DOI:
10.1007/s11096-020-01027-y - 发表时间:
2020 - 期刊:
- 影响因子:2.4
- 作者:
Laura Murphy;B. Brands;Daniel Grant;Andrew Smith;Maria Zhang;B. Sproule - 通讯作者:
B. Sproule
A Real-Time Algorithm for Accurate Collision Detection for Deformable Polyhedral Objects
可变形多面体物体精确碰撞检测的实时算法
- DOI:
10.1162/105474698565514 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Y. Kitamura;Andrew Smith;H. Takemura;F. Kishino - 通讯作者:
F. Kishino
The insoluble fraction isolated after digestion of demineralized human dentine matrix with collagenase.
用胶原酶消化脱矿的人牙本质基质后分离出不溶性部分。
- DOI:
- 发表时间:
1978 - 期刊:
- 影响因子:3
- 作者:
A. Leaver;R. Price;Andrew Smith - 通讯作者:
Andrew Smith
Andrew Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Smith', 18)}}的其他基金
Establishing a new palaeothermometer from the speleothem archive of phosphate-oxygen isotopes
利用磷酸氧同位素洞穴档案建立新的古温度计
- 批准号:
NE/X011968/1 - 财政年份:2023
- 资助金额:
$ 66.3万 - 项目类别:
Research Grant
Exploiting Chalcogen Bonding and Non-Covalent Interactions in Isochalcogenourea Catalysis: Catalyst Preparation, Mechanistic Studies and Applications
在异硫属脲催化中利用硫属键合和非共价相互作用:催化剂制备、机理研究和应用
- 批准号:
EP/T023643/1 - 财政年份:2020
- 资助金额:
$ 66.3万 - 项目类别:
Research Grant
Video-Recordings of Eyewitness Identification in Actual Cases: The Postdictive Value of Eyewitness Behaviors
实际案件中目击者识别的录像:目击者行为的事后价值
- 批准号:
2017510 - 财政年份:2020
- 资助金额:
$ 66.3万 - 项目类别:
Continuing Grant
Underpinning Mechanistic Studies of NHC-Organocatalysis: A Breslow Intermediate Reactivity Scale
NHC 有机催化的基础机制研究:Breslow 中级反应量表
- 批准号:
EP/S019359/1 - 财政年份:2019
- 资助金额:
$ 66.3万 - 项目类别:
Research Grant
RUI: Collaborative Research: Assessments and Stances Regarding the Uncertainty of (Un)Desired Outcomes
RUI:协作研究:关于(不)期望结果的不确定性的评估和立场
- 批准号:
1851766 - 财政年份:2019
- 资助金额:
$ 66.3万 - 项目类别:
Continuing Grant
NSFPLR-NERC: GHOST (Geophysical Habitat of Subglacial Thwaites)
NSFPLR-NERC:GHOST(冰下思韦特斯地球物理栖息地)
- 批准号:
NE/S006672/1 - 财政年份:2018
- 资助金额:
$ 66.3万 - 项目类别:
Research Grant
REU Site: Frontiers in Biomedical Imaging
REU 网站:生物医学成像前沿
- 批准号:
1757837 - 财政年份:2018
- 资助金额:
$ 66.3万 - 项目类别:
Standard Grant
Resource for innovation and application of genetic engineering strategies in embryonic stem cells
胚胎干细胞基因工程策略的创新和应用资源
- 批准号:
MC_UU_00016/10 - 财政年份:2017
- 资助金额:
$ 66.3万 - 项目类别:
Intramural
相似国自然基金
面向理想物理性能分布的新一代高性能装配技术基础理论与方法
- 批准号:52335011
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
面向数字化及服务化的新一代信息物理机床
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于DD4HEP的下一代高能物理实验通用探测器几何框架研究
- 批准号:12175321
- 批准年份:2021
- 资助金额:63 万元
- 项目类别:面上项目
下一代强流重离子加速器关键物理过程中的纵向束流集体效应的模拟研究
- 批准号:12105332
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向下一代无线网络的多维度物理层安全绿色通信系统研究
- 批准号:61871023
- 批准年份:2018
- 资助金额:66.0 万元
- 项目类别:面上项目
相似海外基金
Development of aluminum stabilized HTS coils for next-generation magnets with high radiation resistance and high magnetic field
开发用于下一代高抗辐射和高磁场磁体的铝稳定高温超导线圈
- 批准号:
23H03665 - 财政年份:2023
- 资助金额:
$ 66.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Pre-clinical Bruker Albira Si PET/SPECT/CT imaging system
临床前 Bruker Albira Si PET/SPECT/CT 成像系统
- 批准号:
10633022 - 财政年份:2023
- 资助金额:
$ 66.3万 - 项目类别:
Washington University (WU) ROBIN Center: MicroEnvironment and Tumor Effects Of Radiotherapy (METEOR)
华盛顿大学 (WU) 罗宾中心:放射治疗的微环境和肿瘤效应 (METEOR)
- 批准号:
10715019 - 财政年份:2023
- 资助金额:
$ 66.3万 - 项目类别:
Understanding the Heterogeneity of Nanoscale Extracellular Vesicles, Exomeres, and Supermeres using Next Generation Optical Nanotweezers
使用下一代光学纳米镊子了解纳米级细胞外囊泡、外泌体和 Supermeres 的异质性
- 批准号:
10714221 - 财政年份:2023
- 资助金额:
$ 66.3万 - 项目类别:
Ultrafast sintering of dental zirconia: composition-processing-property relationships with high-throughput fail-fast screening
牙科氧化锆的超快烧结:成分-加工-性能关系与高通量快速失败筛选
- 批准号:
10792738 - 财政年份:2023
- 资助金额:
$ 66.3万 - 项目类别: