Collisional Kinetic Transport: Analysis and Numerical Methods
碰撞动力学输运:分析和数值方法
基本信息
- 批准号:2009736
- 负责人:
- 金额:$ 34.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overall objective of this research is to develop accurate analytical modeling and simulation for a series of diverse phenomena of fundamental scientific interest, at the edge of various technological developments such as plasma evolution in fusion models, modeling of very cold gases in the intermediate transition to form Bose-Einstein condensation, hot-electron transport in semiconductor devices, nanostructures for solar generation of hydrogen, and reacting and polyatomic molecular mixtures associated with aerospace dynamics such as those in re-entry problems. Modeling and simulation will be based on data obtained by accurate crystallographic calculations, considering atomistic corrections, and the presence of rough media. Some of the techniques that will be developed are also pertinent to exciting new applications to non-linear dynamics modeling in bio-social sciences, such as modeling of self-organized flows where "particle" swarms, like birds or fish, couple to fluid dynamics, emerging consensus in population dynamics, multi-agent information transfer and social information dynamics in Internet, to name a few. Most significantly, this project provides research training opportunities for graduate students that prepare them to a job market that ranges from academia, to national labs, and industry.These research goals comprise a broad program in the development of analytical and numerical tools associated with statistical transport equations and systems at the core of applied mathematics in probability, statistics applied to chemistry, physics as well as to biological and social dynamics as well. They concern the modeling of complex interactions systems yielding kinetic frameworks associated to Markovian processes of birth-death dynamics. Such statistical approaches lead to nonlinear integro-differential systems of equations of collisional classical or quantum Boltzmann or Smolukowski type. Computational schemes will be fully designed and analyzed to secure consistency, stability, error estimates control, and convergence rates to equilibrium. Many of these models appear in the collisional theory of semi-classical transport for short- and long-range particle interactions models that describe self-consistent phenomena at nano and meso-scales. New tools from non-linear analysis as well as new computational strategies will be developed to address long-time behavior, stability, and decay rates to stationary modes, as well as qualitative behavior of numerical solutions and optimal computational strategies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究的总体目标是在各种技术发展的边缘,为一系列具有基础科学意义的不同现象开发精确的分析模型和模拟,例如聚变模型中的等离子体演化、在中间过渡过程中对极冷气体的建模。形成玻色-爱因斯坦凝聚、半导体器件中的热电子传输、太阳能产生氢的纳米结构,以及与航空航天动力学(例如再入问题中的那些)相关的反应和多原子分子混合物。建模和模拟将基于通过精确晶体学计算获得的数据,考虑原子校正和粗糙介质的存在。将开发的一些技术也与生物社会科学中非线性动力学建模的令人兴奋的新应用相关,例如对自组织流进行建模,其中“粒子”群(如鸟类或鱼类)与流体动力学耦合,在人口动态、多智能体信息传递和互联网社会信息动态等方面正在形成共识。最重要的是,该项目为研究生提供研究培训机会,帮助他们为进入学术界、国家实验室和工业界的就业市场做好准备。这些研究目标包括开发与统计运输相关的分析和数值工具的广泛计划方程和系统是概率应用数学的核心,统计应用于化学、物理以及生物和社会动力学。他们关注复杂相互作用系统的建模,产生与出生-死亡动力学的马尔可夫过程相关的动力学框架。这种统计方法导致了碰撞经典或量子玻尔兹曼或斯莫卢科夫斯基类型的非线性积分微分方程组。计算方案将经过全面设计和分析,以确保一致性、稳定性、误差估计控制和平衡收敛速度。其中许多模型出现在短程和长程粒子相互作用模型的半经典输运碰撞理论中,这些模型描述了纳米和介观尺度的自洽现象。 将开发非线性分析的新工具以及新的计算策略,以解决稳态模式的长期行为、稳定性和衰减率,以及数值解和最佳计算策略的定性行为。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global well-posedness of a binary–ternary Boltzmann equation
二元至三元玻尔兹曼方程的全局适定性
- DOI:10.4171/aihpc/9
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Ampatzoglou, Ioakeim;Gamba, Irene M.;Pavlović, Nataša;Tasković, Maja
- 通讯作者:Tasković, Maja
Reconstructing the thermal phonon transmission coefficient at solid interfaces in the phonon transport equations
重建声子传输方程中固体界面处的热声子传输系数
- DOI:
- 发表时间:2023-10
- 期刊:
- 影响因子:1.9
- 作者:I.M.Gamba; Q. Li
- 通讯作者:Q. Li
A conservative Galerkin solver for the quasilinear diffusion model in magnetized plasmas
磁化等离子体中拟线性扩散模型的保守伽辽金求解器
- DOI:10.1016/j.jcp.2023.112220
- 发表时间:2023-09
- 期刊:
- 影响因子:4.1
- 作者:Huang, Kun;Abdelmalik, Michael;Breizman, Boris;Gamba, Irene M.
- 通讯作者:Gamba, Irene M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irene Gamba其他文献
Irene Gamba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irene Gamba', 18)}}的其他基金
Non-local Kinetic Collisional Transport: Analysis and Numerical Methods
非局部动力学碰撞传输:分析和数值方法
- 批准号:
1715515 - 财政年份:2017
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Pan-American Conference on Differential Equations and Non-linear Analysis
泛美微分方程和非线性分析会议
- 批准号:
1446125 - 财政年份:2015
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
The Kinetics of Interacting Particle Systems: Theory and Numerical Methods
相互作用粒子系统的动力学:理论和数值方法
- 批准号:
1413064 - 财政年份:2014
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Collaborative Research: RNMS: Kinetic Description of Emerging Challenges in Multiscale Problems of Natural Sciences
合作研究:RNMS:自然科学多尺度问题中新挑战的动力学描述
- 批准号:
1107465 - 财政年份:2012
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Accurate high performance computing for nonlinear collisional kinetic theory
非线性碰撞动力学理论的精确高性能计算
- 批准号:
1217154 - 财政年份:2012
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Kinetic transport and dynamics in complex interacting systems: analysis and simulations
复杂相互作用系统中的动能传输和动力学:分析和模拟
- 批准号:
1109625 - 财政年份:2011
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Statistical transport of complex particle systems
复杂粒子系统的统计传输
- 批准号:
0807712 - 财政年份:2008
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Kinetic Description of Multiscale Phenomena: Modeling, Theory and Computation
FRG:协作研究:多尺度现象的动力学描述:建模、理论和计算
- 批准号:
0757450 - 财政年份:2008
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
EMSW21-RTG - Program in Applied and Computational Analysis
EMSW21-RTG - 应用和计算分析程序
- 批准号:
0636586 - 财政年份:2007
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Non-Equilibrium Problems in Collisional Kinetic and Quantum Theory
碰撞动力学和量子理论中的非平衡问题
- 批准号:
0507038 - 财政年份:2005
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
相似国自然基金
M1胆碱受体SUMO化修饰增强Gαq偶联并促进受体运输的分子动力学和认知改善效应研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
空间系留电梯载荷快速运输过程的动力学与在线稳定控制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
航空运输网络中航班动态级联延误蔓延动力学演化机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞内远距离双向运输的数学建模
- 批准号:11701201
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
班轮运输网络的时滞动力学研究
- 批准号:11602137
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Pyruvate Dehydrogenase Complex Activation as a Strategy to Ameliorate Metabolic Disease
丙酮酸脱氢酶复合物激活作为改善代谢疾病的策略
- 批准号:
10795189 - 财政年份:2023
- 资助金额:
$ 34.5万 - 项目类别:
PET imaging of microtubules in cognitively normal and impaired older adults
认知正常和受损老年人的微管 PET 成像
- 批准号:
10915761 - 财政年份:2023
- 资助金额:
$ 34.5万 - 项目类别:
Optimal Transport Applications to Probability, Machine Learning, and Kinetic Theory
最优运输在概率、机器学习和动力学理论中的应用
- 批准号:
2205937 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Regulation of bidirectional transport of the nucleus by adapter proteins
衔接蛋白调节细胞核的双向运输
- 批准号:
10344297 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别: