Program in Renormalization and Universality in Mathematics and Mathematical Physics

数学和数学物理重整化和普遍性计划

基本信息

  • 批准号:
    0514226
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2006-08-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTBleherThis research project is directed on fundamental problems of thetheory of random matrices and random polynomials and theirapplications, and on related problems in statistical physics. Thecornerstone of the problems is different conjectures of universality,which state that as the size of a random matrix (or the degree of arandom polynomial) approaches infinity, the correlations betweenproperly scaled eigenvalues (or zeros) approach a universal limit. Inthe current project the PI continues his studies of the universalityin random matrix models, random polynomials, and statisticalphysics. This includes: (i) The Riemann-Hilbert (RH) approach todouble scaling limits in random matrix models. (ii) RH approach torandom matrices with external source. (iii) Semiclassical asymptoticsand RH approach to multi-matrix models. (iv) RH approach to thesix-vertex model of statistical physics. (v) Scaling limits anduniversality in non-Gaussian ensembles of random polynomials andrandom algebraic varieties.The project has an interdisciplinary character and it lies on thefrontier between physics and mathematics. The problems of scaling anduniversality are central in many areas of modern science: theory ofcritical phenomena and phase transitions, statistical physics andquantum field theory, theory of quantum chaos, nonlinear dynamics,etc. This project is directed on development of powerful mathematicalmethods to the problems of scaling and universality in the theory ofrandom matrices, random polynomials, and related topics. It involvesdifferent areas of mathematics: analysis, theory of integrablesystems, probability theory, semiclassical asymptotics for systems ofdifferential equations, complex analysis, etc. The research projectunder consideration has direct applications to various physicalproblems: combinatorial asymptotics related to quantum gravity,exactly solvable models of statistical physics, spin systems on randomsurfaces, theory of critical phenomena and phase transitions, quantumchaos. Possible further applications include theory of knots andlinks and related problems in molecular biology, growth models,statistical data analysis, and others.
AbstrackBleherhis研究项目针对随机矩阵和随机多项式及其应用的基本问题,以及统计物理学中的相关问题。问题的核心是普遍性的不同猜想,它表明,作为随机矩阵的大小(或Arandom多项式的程度)接近无穷大,因此,特定缩放的特征值​​(或Zeros)接近普遍限制之间的相关性。 在当前项目中,PI继续他对宇宙矩阵模型,随机多项式和统计物理学的研究。这包括:(i)随机矩阵模型中的Riemann-Hilbert(RH)方法缩放限制。 (ii)与外部源的RH方法Torandom矩阵。 (iii)多矩阵模型的半经典渐近学和RH方法。 (iv)统计物理学的THESIX-VERTEX模型的RH方法。 (v)随机多项式的非高斯合奏中的缩放限制和附加性。该项目具有跨学科的特征,它在物理和数学之间的范围内。在现代科学的许多领域,缩放和非妇女的问题是核心:批评现象和相变理论,统计物理学和Quantum田间理论,量子混乱理论,非线性动力学等。该项目针对范围矩阵,随机多项式和相关主题的规模和普遍性问题的强大数学方法的发展。 It involvesdifferent areas of mathematics: analysis, theory of integrablesystems, probability theory, semiclassical asymptotics for systems ofdifferential equations, complex analysis, etc. The research projectunder consideration has direct applications to various physicalproblems: combinatorial asymptotics related to quantum gravity,exactly solvable models of statistical physics, spin systems on randomsurfaces, theory of critical phenomena and phase transitions,量子。可能的进一步应用包括结和链接理论以及分子生物学,增长模型,统计数据分析等中的相关问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pavel Bleher其他文献

Non-Gaussian energy level statistics for some integrable systems.
一些可积系统的非高斯能级统计。
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Pavel Bleher;Pavel Bleher;F. Dyson;F. Dyson;J. Lebowitz;J. Lebowitz
  • 通讯作者:
    J. Lebowitz

Pavel Bleher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pavel Bleher', 18)}}的其他基金

Random Matrix Models and Statistical Mechanics
随机矩阵模型和统计力学
  • 批准号:
    1565602
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Simons Center for Geometry and Physics Thematic Program for 2016 "Statistical Mechanics and Combinatorics"
西蒙斯几何与物理中心2016年专题项目“统计力学与组合学”
  • 批准号:
    1603185
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Random matrix models and their applications
随机矩阵模型及其应用
  • 批准号:
    1265172
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Random matrix models and their applications to statistical mechanics
随机矩阵模型及其在统计力学中的应用
  • 批准号:
    0969254
  • 财政年份:
    2010
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CRM 2008-9 Thematic Program: Probabilistic Methods in Mathematical Physics
CRM 2008-9 专题项目:数学物理中的概率方法
  • 批准号:
    0757926
  • 财政年份:
    2008
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Scaling and universality in random matrix models and statistical physics
随机矩阵模型和统计物理中的标度和普适性
  • 批准号:
    0652005
  • 财政年份:
    2007
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Scaling and universality in random matrix models, random polynomials and statistical physics
随机矩阵模型、随机多项式和统计物理中的标度和普适性
  • 批准号:
    0354962
  • 财政年份:
    2004
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Universality and Scaling in Random Matrix Models, Random Polynomials, and Quantum Mechanics and Statistical Physics
随机矩阵模型、随机多项式、量子力学和统计物理中的普适性和标度
  • 批准号:
    9970625
  • 财政年份:
    1999
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Distribution of Eigenvalues of the Schrodinger Operator on Compact Manifolds. Matrix Model and Asymptotics of Orthogonal Polynomials
紧流形上薛定谔算子的特征值分布。
  • 批准号:
    9623214
  • 财政年份:
    1996
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

各向同性淬致无序环境中层列型液晶A-C相变
  • 批准号:
    11004241
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
  • 批准号:
    2350340
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Development of tensor network renormalization group method for high dimensions and new understanding of quantum liquid phases
高维张量网络重整化群方法的发展及对量子液相的新认识
  • 批准号:
    23H01092
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
  • 批准号:
    23K13096
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: Renormalization and Visualization for packings, billiards and surfaces
会议:包装、台球和表面的重整化和可视化
  • 批准号:
    2333366
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
ERI: Representations of Complex Engineering Systems via Technology Recursion and Renormalization Group
ERI:通过技术递归和重整化群表示复杂工程系统
  • 批准号:
    2301627
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了