Collaborative Research: NRI: INT: Cooperative Underwater Structure Inspection and Mapping

合作研究:NRI:INT:合作水下结构检查和测绘

基本信息

项目摘要

This project develops a system of co-robots collaborating with a human operator to map underwater structures. Underwater structure mapping is an important capability applicable to multiple domains: marine archaeology, infrastructure maintenance, resource utilization, security, and environmental monitoring. The underwater environment is challenging and dangerous for humans in many aspects, while robotic operations face additional challenges compared to the above-water ones. In particular, both sensing and communications are restricted, and planning is required in three dimensions with limited information. The project will generate a 3D model of the underwater structure providing a high-resolution photo-realistic representation. Autonomous Underwater Vehicles (AUVs)will be operating in close cooperation, generating a dense vision-based reconstruction of the observed surface, and coordinated with remote human operators.. The project integrates research and education through training of undergraduate and graduate students, who will have the opportunity to work in an inclusive, interdisciplinary team across South Carolina, New Jersey, and New Hampshire. The system will be integrated and tested for archaeological mapping at field sites. Research will be conducted along three directions. (1) Robust underwater state estimation based on a deep learning approach and a hybrid representation for 3-D reconstruction that will encode probabilistic occupancy for both navigation and initial inspection from users. (2) Collaborative planning, for the proximal observers based on a local optimization framework that originally considers multiple criteria, including information gain, uncertainty reduction, and loop closure, active positioning of distal observers, and user preference to make joint measurements and inform proximal observers on where to go. (3) Information driven communications, with careful design of efficient data representation of the 3-D reconstruction and of a cross-layer optimization for deciding when and how to share. These three components will contribute towards the overarching goal of enabling a team of co-robots to operate autonomously and produce a realistic map of an underwater structure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发了与人类操作员合作以绘制水下结构的共同机器人系统。水下结构映射是适用于多个领域的重要功能:海洋考古学,基础设施维护,资源利用,安全性和环境监控。在许多方面,水下环境对人类具有挑战性和危险,而与上述水相比,机器人操作面临着其他挑战。特别是,感应和通信受到限制,并且在三个维度中需要计划有限的信息。该项目将生成水下结构的3D模型,从而提供高分辨率的照片现实代表。自动驾驶水下车辆(AUV)将在密切合作中运作,产生基于观察到的表面的密集重建,并与遥远的人类运营商进行协调。该项目通过对本科生和研究生的培训来整合研究和教育,他们将有机会在南卡罗来纳州南卡罗来纳州,新Jersey,New Jersey和New Hampshire和New Jersey和New Hampshire的整个跨学科团队中工作。该系统将在现场位点进行集成和测试,以进行考古映射。 研究将沿三个方向进行。 (1)基于深度学习方法的强大水下状态估计以及3-D重建的混合表示,将对用户的导航和初步检查编码概率占用。 (2)基于本地优化框架的近端观察者的合作计划,该框架最初考虑了多个标准,包括信息增益,降低不确定性和循环封闭,远端观察者的主动定位以及用户的优先选择,以进行关节测量并告知近端观察者。 (3)信息驱动的通信,并仔细设计了3-D重建的有效数据表示以及用于决定何时以及如何共享的跨层优化。这三个组成部分将有助于使一组共同机器人团队自主操作并制作出水下结构的现实地图。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来获得支持的。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-Time Dense 3D Mapping of Underwater Environments
水下环境的实时密集 3D 测绘
  • DOI:
    10.1109/icra48891.2023.10160266
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Weihan;Joshi, Bharat;Burgdorfer, Nathaniel;Batsos, Konstantinos;Quattrini Li, Alberto;Mordohai, Philippos;Rekleitis, Ioannis
  • 通讯作者:
    Rekleitis, Ioannis
AquaVis: A Perception-Aware Autonomous Navigation Framework for Underwater Vehicles
AquaVis:水下航行器的感知感知自主导航框架
DeepURL: Deep Pose Estimation Framework for Underwater Relative Localization
  • DOI:
    10.1109/iros45743.2020.9341201
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bharat Joshi;M. Modasshir;Travis Manderson;Hunter Damron;M. Xanthidis;Alberto Quattrini Li;Ioannis M. Rekleitis;G. Dudek
  • 通讯作者:
    Bharat Joshi;M. Modasshir;Travis Manderson;Hunter Damron;M. Xanthidis;Alberto Quattrini Li;Ioannis M. Rekleitis;G. Dudek
3-D Reconstruction Using Monocular Camera and Lights: Multi-View Photometric Stereo for Non-Stationary Robots
Human Diver-Inspired Visual Navigation: Towards Coverage Path Planning of Shipwrecks
受人类潜水员启发的视觉导航:沉船覆盖路径规划
  • DOI:
    10.4031/mtsj.55.4.6
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Karapetyan, Nare;Johnson, James V.;Rekleitis, Ioannis
  • 通讯作者:
    Rekleitis, Ioannis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ioannis Rekleitis其他文献

Use of an Autonomous Surface Vehicle to Collect High Spatial Resolution Water Quality Data at Lake Wateree, SC
使用自主地面车辆收集南卡罗来纳州沃特利湖的高分辨率空间分辨率水质数据
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Archana Venkatachari;Annie Bourbonnais;Ibrahim Salman;Ioannis Rekleitis;Alberto Quattrini Li;Kathryn Cottingham;Holly Ewing;Denise Bruesewitz;Emily Arsenault;Quin K. Shingai
  • 通讯作者:
    Quin K. Shingai
Optimizing Autonomous Sampling for Improved Detection of Dissolved Nitrogen Inputs Sustaining Harmful Cyanobacterial Blooms in Freshwater Lakes
优化自主采样以改进对维持淡水湖中有害蓝藻水华的溶解氮输入的检测
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ibrahim Salman;Dalton Hite;Annie Bourbonnais;Ioannis Rekleitis
  • 通讯作者:
    Ioannis Rekleitis
Motion Planning by Sampling in Subspaces of Progressively Increasing Dimension
通过在维度逐渐增加的子空间中采样进行运动规划
  • DOI:
    10.1007/s10846-020-01217-w
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    M. Xanthidis;J. Esposito;Ioannis Rekleitis;Jason M. O'Kane
  • 通讯作者:
    Jason M. O'Kane

Ioannis Rekleitis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ioannis Rekleitis', 18)}}的其他基金

CAREER: Enabling Autonomy via Enhanced Situational Awareness for Underwater Robotics
职业:通过增强水下机器人的态势感知实现自主性
  • 批准号:
    1943205
  • 财政年份:
    2020
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Continuing Grant
NRI: Enhancing Mapping Capabilities of Underwater Caves using Robotic Assistive Technology
NRI:利用机器人辅助技术增强水下洞穴的测绘能力
  • 批准号:
    1637876
  • 财政年份:
    2016
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
II-New: A Heterogeneous Team of Field Robots for Research into Coordinated Monitoring of Coastal Environments
II-新:用于研究沿海环境协调监测的异构现场机器人团队
  • 批准号:
    1513203
  • 财政年份:
    2015
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2422640
  • 财政年份:
    2024
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2410255
  • 财政年份:
    2023
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
  • 批准号:
    2132936
  • 财政年份:
    2022
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了