CDS&E: Collaborative Research: Private Data Analytics, Synthesis, and Sharing for Large-Scale Multi-Modal Smart City Mobility Research
CDS
基本信息
- 批准号:2002985
- 负责人:
- 金额:$ 16.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Given the trend towards urbanization, understanding real-time human mobility in urban areas has become increasingly important for many research areas from Mobile Networking, to Transportation/Urban Planning, Behavior Modeling, Emergency Response, to recent Pandemic Mitigation. Many analytical models have been proposed to understand human mobility based on mobility data. However, most of these data are proprietary and cannot be accessed by the research community at large. Fortunately, based on the latest expansion of urban infrastructures, such mobility data has been collected by city government agencies and some companies that are willing to share the data for social good. However, a key challenge is the privacy concern since such data usually have sensitive information and system design details for potential privacy and security issues. To address this issue, the project aims to generate realistic yet synthetic mobility data through machine learning based on the real mobility data analytics and then share these realistic synthetic data with the research community. The objective of the project is to lower the entry barriers for interdisciplinary researchers in mobility data-intensive research aimed at addressing major scientific/societal challenges related to urban mobility.The core merit of the project lies in integrating two aims, i.e., privacy-preserving data synthesis and data integration, for large-scale smart city mobility research. For the first research aim, the project plans to utilize recent advances in Generative Adversarial Networks (GANs) to enable large-scale mobility data synthesis. The goal is to achieve the individual-level release of realistic synthetic mobility data by GAN-based models targeting key characteristics of human mobility. The GAN architecture proposed has novel technical components to augment basic GAN frameworks, which optimize the fundamental trade-off between privacy (regarding removing/obfuscating sensitive mobility features) and utility (in terms of preserving non-sensitive mobility features) with long-range dependencies (in terms of repeated mobility patterns) revealed. For the second research aim, the PIs plans to perform multi-modal data integration based on aligned multi-tensor decomposition under mobility semantics. The technical approach proposed is to enable multi-modal data integration based on synthetic single-modal data for comprehensive mobility modeling with a set of machine learning techniques including novel mobility semantic learning and multi-tensor decomposition with aligned spatiotemporal granularity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
鉴于城市化的趋势,了解城市地区的实时人员流动对于从移动网络到交通/城市规划、行为建模、应急响应到最近的流行病缓解等许多研究领域变得越来越重要。人们提出了许多分析模型来基于流动性数据来理解人类流动性。然而,这些数据大部分都是专有的,整个研究界无法访问。幸运的是,基于城市基础设施的最新扩建,此类出行数据已被市政府机构和一些愿意为了社会公益而共享数据的公司收集。然而,一个关键的挑战是隐私问题,因为此类数据通常包含敏感信息和潜在隐私和安全问题的系统设计细节。为了解决这个问题,该项目旨在通过基于真实移动数据分析的机器学习生成真实且合成的移动数据,然后与研究界共享这些真实的合成数据。该项目的目标是降低跨学科研究人员进行移动数据密集型研究的进入门槛,旨在解决与城市移动相关的重大科学/社会挑战。该项目的核心优点在于整合两个目标,即隐私保护数据合成和数据集成,用于大规模智慧城市移动研究。对于第一个研究目标,该项目计划利用生成对抗网络(GAN)的最新进展来实现大规模移动数据合成。目标是通过基于 GAN 的模型针对人类流动性的关键特征,实现个人层面的真实合成流动性数据的发布。提出的 GAN 架构具有新颖的技术组件来增强基本的 GAN 框架,从而优化隐私(关于删除/混淆敏感移动性特征)和实用性(关于保留非敏感移动性特征)与远程依赖性之间的基本权衡(就重复的移动模式而言)揭示了。对于第二个研究目标,PI 计划基于移动语义下对齐的多张量分解来执行多模态数据集成。所提出的技术方法是基于合成单模态数据实现多模态数据集成,通过一套机器学习技术进行全面的移动建模,包括新颖的移动语义学习和具有对齐时空粒度的多张量分解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
CryptGPU:GPU 上的快速隐私保护机器学习
- DOI:10.1109/sp40001.2021.00098
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Tan, Sijun;Knott, Brian;Tian, Yuan;Wu, David J.
- 通讯作者:Wu, David J.
Towards Return Parity in Markov Decision Processes
马尔可夫决策过程中的回报平价
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Chi, J.;Shen, J.;Dai, X.;Zhang, W;Tian, Y.;Zhao, H.
- 通讯作者:Zhao, H.
Understanding and Mitigating Accuracy Disparity in Regression
了解并减少回归中的准确性差异
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Chi, J;Tian, Y;Gordon, G;Zhao, H.
- 通讯作者:Zhao, H.
TransRisk: Mobility Privacy Risk Prediction based on Transferred Knowledge
TransRisk:基于转移知识的移动隐私风险预测
- DOI:10.1145/3534581
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Xie, Xiaoyang;Hong, Zhiqing;Qin, Zhou;Fang, Zhihan;Tian, Yuan;Zhang, Desheng
- 通讯作者:Zhang, Desheng
Model-Targeted Poisoning Attacks with Provable Convergence
具有可证明收敛性的模型目标中毒攻击
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Suya, F.;Mahloujifar, S;Suri, A;Evans, D;Y. Tian
- 通讯作者:Y. Tian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Evans其他文献
On Staleness and the Delivery of Web Pages
论网页的陈旧性和交付
- DOI:
10.1023/a:1022641304493 - 发表时间:
2001-11-05 - 期刊:
- 影响因子:5.9
- 作者:
J. Wong;David Evans;M. Kwok - 通讯作者:
M. Kwok
Combing for Credentials: Active Pattern Extraction from Smart Reply
凭证梳理:从智能回复中提取主动模式
- DOI:
- 发表时间:
2022-07-14 - 期刊:
- 影响因子:0
- 作者:
Bargav Jayaraman;Esha Ghosh;Melissa Chase;Sambuddha Roy;Huseyin A. Inan;Wei Dai;David Evans - 通讯作者:
David Evans
Low-temperature oxidation of brown coal. 1. Changes in internal surface due to oxidation
褐煤的低温氧化。
- DOI:
10.1016/0016-2361(74)90060-x - 发表时间:
1974-04-01 - 期刊:
- 影响因子:7.4
- 作者:
P. D. Swann;D. Allardice;David Evans - 通讯作者:
David Evans
Automatically Hardening Web Applications Using Precise Tainting
使用精确污染自动强化 Web 应用程序
- DOI:
10.1007/0-387-25660-1_20 - 发表时间:
2005-05-30 - 期刊:
- 影响因子:0
- 作者:
A. Nguyen;Salvatore Guarnieri;Doug Greene;J. Shirley;David Evans - 通讯作者:
David Evans
Host-influenced geochemical signature in the parasitic foraminifera Hyrrokkin sarcophaga
寄生有孔虫 Hyrrokkin 石棺中受寄主影响的地球化学特征
- DOI:
10.5194/bg-18-4733-2021 - 发表时间:
2021-08-20 - 期刊:
- 影响因子:4.9
- 作者:
N. Schleinkofer;David Evans;M. Wisshak;J. Büscher;J. Fiebig;A. Freiwald;Sven Härter;H. Marschall;S. Voigt;J. Raddatz - 通讯作者:
J. Raddatz
David Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Evans', 18)}}的其他基金
Birmingham Nuclear Physics Consolidated Grant 2023
伯明翰核物理综合赠款 2023
- 批准号:
ST/Y00034X/1 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Research Grant
Mechanistically understanding biomineralisation and ancient ocean chemistry changes to facilitate robust climate model validation
从机械角度理解生物矿化和古代海洋化学变化,以促进稳健的气候模型验证
- 批准号:
EP/Y034252/1 - 财政年份:2023
- 资助金额:
$ 16.5万 - 项目类别:
Research Grant
Birmingham Nuclear Physics Consolidated Grant 2020
伯明翰核物理综合补助金 2020
- 批准号:
ST/V001043/1 - 财政年份:2021
- 资助金额:
$ 16.5万 - 项目类别:
Research Grant
Collaborative Research: Paleomagnetism and Geochronology of Mafic Dikes in Morocco, Reconstructing West Africa in Proterozoic Supercontinents
合作研究:摩洛哥镁铁质岩脉的古地磁学和地质年代学,重建元古代超大陆中的西非
- 批准号:
1953549 - 财政年份:2020
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Collaborative Research: A Unified Framework for Optimal Public Debt Management
合作研究:最优公共债务管理的统一框架
- 批准号:
1918748 - 财政年份:2019
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
- 批准号:
1804603 - 财政年份:2018
- 资助金额:
$ 16.5万 - 项目类别:
Continuing Grant
Chronic bee paralysis virus: The epidemiology, evolution and mitigation of an emerging threat to honey bees.
慢性蜜蜂麻痹病毒:对蜜蜂的新威胁的流行病学、进化和缓解。
- 批准号:
BB/R00305X/1 - 财政年份:2018
- 资助金额:
$ 16.5万 - 项目类别:
Research Grant
SaTC: CORE: Small: Multi-Party High-dimensional Machine Learning with Privacy
SaTC:核心:小型:具有隐私性的多方高维机器学习
- 批准号:
1717950 - 财政年份:2017
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
The biology and pathogenesis of Deformed Wing Virus, the major virus pathogen of honeybees
蜜蜂主要病毒病原变形翅病毒的生物学和发病机制
- 批准号:
BB/M00337X/2 - 财政年份:2016
- 资助金额:
$ 16.5万 - 项目类别:
Research Grant
The search for the exotic : subfactors, conformal field theories and modular tensor categories
寻找奇异的东西:子因子、共形场论和模张量类别
- 批准号:
EP/N022432/1 - 财政年份:2016
- 资助金额:
$ 16.5万 - 项目类别:
Research Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: 3-D Stellar Hydrodynamics of Convective Penetration and Convective Boundary Mixing in Massive Stars
合作研究:CDS
- 批准号:
2309102 - 财政年份:2023
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
- 批准号:
2302618 - 财政年份:2023
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
- 批准号:
2302764 - 财政年份:2023
- 资助金额:
$ 16.5万 - 项目类别:
Continuing Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245298 - 财政年份:2023
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant