SaTC: CORE: Small: Multi-Party High-dimensional Machine Learning with Privacy

SaTC:核心:小型:具有隐私性的多方高维机器学习

基本信息

  • 批准号:
    1717950
  • 负责人:
  • 金额:
    $ 49.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Individuals and organizations can frequently benefit from combining their data to learn collective models. However, combining data to enable multi-party learning is often not possible. It may not be permitted due to privacy policies, or may be considered too risky for a business to expose its own data to others. In addition, high-dimensional data are prevalent in modern data-driven applications. Learning from high-dimensional data owned by differential organizations is even more challenging, due to the bias introduced by the high-dimensional machine learning methods. The overarching goal of this project is to address these challenges by developing methods that enable a group of mutually distrusting parties to securely collaborate to apply high dimensional machine learning methods to produce a joint model without exposing their own data. This project enables owners of sensitive data to jointly learn models across their datasets without exposing that data and providing meaningful privacy guarantees. It produces open source software tools and has many important societal applications, including its use in analyzing electronic health records across multiple hospitals to identify medical correlations what could not be found by any individual hospital. The key of multi-party high-dimensional machine learning is to find an efficient way to produce an accurate aggregate model that reflects all of the data, by combining local models that are developed independently based on individual data sets. The strategy of this project is to combine two emerging research directions: distributed machine learning, which seeks to distribute machine learning algorithms across hosts and produce an aggregate model by combining multiple local models; and secure multi-party computation, which enables a group of mutually distrusting parties to jointly compute a function without leaking information about their private inputs or any intermediate results. It also incorporates differential privacy-based mechanisms into multi-party high dimensional learning, which further protects the individual data points in each party. The results of this research have the potential to impact both the machine learning and security research communities. The education plan of this project includes developing open course materials that integrate privacy and machine learning, and provide research-based training opportunities for both undergraduate and graduate students in computer science, systems engineering, and medical informatics. It actively gets underrepresented groups involved in research projects, and trains a new generation of interdisciplinary researchers.
个人和组织经常可以通过组合数据来学习集体模型而受益。然而,结合数据来实现多方学习通常是不可能的。 由于隐私政策可能不允许,或者企业将自己的数据暴露给他人可能被认为风险太大。此外,高维数据在现代数据驱动的应用程序中普遍存在。由于高维机器学习方法引入的偏差,从不同组织拥有的高维数据中学习更具挑战性。该项目的总体目标是通过开发方法来应对这些挑战,使一组相互不信任的各方能够安全地协作,应用高维机器学习方法来生成联合模型,而无需暴露自己的数据。该项目使敏感数据的所有者能够共同学习其数据集中的模型,而无需公开该数据并提供有意义的隐私保证。 它生产开源软件工具,并具有许多重要的社会应用,包括用于分析多家医院的电子健康记录,以识别任何一家医院无法找到的医疗相关性。 多方高维机器学习的关键是找到一种有效的方法,通过组合基于各个数据集独立开发的局部模型,产生反映所有数据的精确聚合模型。该项目的策略是结合两个新兴的研究方向:分布式机器学习,寻求跨主机分布机器学习算法,并通过组合多个本地模型产生聚合模型;安全多方计算,使一组互不信任的各方能够共同计算一个函数,而不会泄露有关其私有输入或任何中间结果的信息。还将基于差异化隐私的机制融入到多方高维学习中,进一步保护了各方的个体数据点。这项研究的结果有可能影响机器学习和安全研究社区。该项目的教育计划包括开发融合隐私和机器学习的开放课程材料,并为本科生和研究生提供计算机科学、系统工程和医学信息学方面的研究型培训机会。它积极让代表性不足的群体参与研究项目,并培养新一代的跨学科研究人员。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Knowledge Transfer Framework for Differentially Private Sparse Learning
差分隐私稀疏学习的知识转移框架
  • DOI:
    10.1609/aaai.v34i04.6090
  • 发表时间:
    2019-09-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingxiao Wang;Quanquan Gu
  • 通讯作者:
    Quanquan Gu
Distributed Learning without Distress: Privacy-Preserving Empirical Risk Minimization
无忧分布式学习:保护隐私的经验风险最小化
  • DOI:
  • 发表时间:
    2018-12-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bargav Jayaraman;Lingxiao Wang;David Evans;Quanquan Gu
  • 通讯作者:
    Quanquan Gu
Formalizing Distribution Inference Risks
形式化分布推理风险
A Pragmatic Introduction to Secure Multi-Party Computation
安全多方计算的实用介绍
  • DOI:
    10.1561/3300000019
  • 发表时间:
    2019-03-31
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David E. Evans;V. Kolesnikov;Mike Rosulek
  • 通讯作者:
    Mike Rosulek
Differentially Private Iterative Gradient Hard Thresholding for Sparse Learning
用于稀疏学习的差分私有迭代梯度硬阈值
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Evans其他文献

Domination and Exploitation in the World Economy in the 1990s
20世纪90年代世界经济的统治与剥削
  • DOI:
    10.1111/j.1759-5436.1993.mp24003006.x
  • 发表时间:
    1993-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Evans
  • 通讯作者:
    David Evans
Brain death: the family in crisis.
脑死亡:家庭陷入危机。
Capacity planning for event-based systems using automated performance predictions
使用自动性能预测对基于事件的系统进行容量规划
Latest Cretaceous foraminiferal ecology and palaeoceanographic inferences from chamber-specific LA-ICPMS analysis.
根据特定室 LA-ICPMS 分析得出的最新白垩纪有孔虫生态学和古海洋学推论。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Henehan;David Evans;W. Müller;P. Hull
  • 通讯作者:
    P. Hull
Deep and Shallow Integration in Asia: Towards a Holistic Account
亚洲的深浅一体化:迈向整体账户
  • DOI:
    10.1111/j.1759-5436.2006.tb00243.x
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Evans;R. Kaplinsky;S. Robinson
  • 通讯作者:
    S. Robinson

David Evans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Evans', 18)}}的其他基金

Birmingham Nuclear Physics Consolidated Grant 2023
伯明翰核物理综合赠款 2023
  • 批准号:
    ST/Y00034X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Research Grant
Mechanistically understanding biomineralisation and ancient ocean chemistry changes to facilitate robust climate model validation
从机械角度理解生物矿化和古代海洋化学变化,以促进稳健的气候模型验证
  • 批准号:
    EP/Y034252/1
  • 财政年份:
    2023
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Research Grant
Birmingham Nuclear Physics Consolidated Grant 2020
伯明翰核物理综合补助金 2020
  • 批准号:
    ST/V001043/1
  • 财政年份:
    2021
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Research Grant
CDS&E: Collaborative Research: Private Data Analytics, Synthesis, and Sharing for Large-Scale Multi-Modal Smart City Mobility Research
CDS
  • 批准号:
    2002985
  • 财政年份:
    2020
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Paleomagnetism and Geochronology of Mafic Dikes in Morocco, Reconstructing West Africa in Proterozoic Supercontinents
合作研究:摩洛哥镁铁质岩脉的古地磁学和地质年代学,重建元古代超大陆中的西非
  • 批准号:
    1953549
  • 财政年份:
    2020
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Standard Grant
Collaborative Research: A Unified Framework for Optimal Public Debt Management
合作研究:最优公共债务管理的统一框架
  • 批准号:
    1918748
  • 财政年份:
    2019
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Standard Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
  • 批准号:
    1804603
  • 财政年份:
    2018
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Continuing Grant
Chronic bee paralysis virus: The epidemiology, evolution and mitigation of an emerging threat to honey bees.
慢性蜜蜂麻痹病毒:对蜜蜂的新威胁的流行病学、进化和缓解。
  • 批准号:
    BB/R00305X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Research Grant
The biology and pathogenesis of Deformed Wing Virus, the major virus pathogen of honeybees
蜜蜂主要病毒病原变形翅病毒的生物学和发病机制
  • 批准号:
    BB/M00337X/2
  • 财政年份:
    2016
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Research Grant
The search for the exotic : subfactors, conformal field theories and modular tensor categories
寻找奇异的东西:子因子、共形场论和模张量类别
  • 批准号:
    EP/N022432/1
  • 财政年份:
    2016
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Research Grant

相似国自然基金

基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
  • 批准号:
    82301603
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
前丘脑室旁核小胶质细胞经由TNF-α参与强迫进食行为的作用及机制研究
  • 批准号:
    82301521
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
  • 批准号:
    82304474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
  • 批准号:
    32300220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Continuing Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
  • 批准号:
    2341206
  • 财政年份:
    2024
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
  • 批准号:
    2343387
  • 财政年份:
    2024
  • 资助金额:
    $ 49.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了