Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries

合作研究:CDS

基本信息

项目摘要

Lithium-sulfur batteries (LSBs) consisting of a lithium metal anode and an earth-abundant sulfur cathode have attracted much attention as a promising candidate for energy storage. To date, several challenges and technical hurdles prevent the development of LSBs. In this collaborative project, Professors Farnaz Shakib (New Jersey Institute of Technology) and Mohammad Momeni (University of Missouri–Kansas City) will investigate the design and application of electrically-conductive metal-organic frameworks (EC-MOFs) as cathode materials for LSBs. EC-MOFs are a new class of nanoporous materials with exceptionally high surface area and layered structures that can tolerate mechanical deformations during battery operation. This project will advance science by employing novel computational techniques to design and investigate the functionality of a new class of materials as cathodes. This will lead to the design of more efficient clean energy resources. During this project, graduate students will be trained as the skilled workforce for the future of STEM. Undergraduate and K-12 level students will learn the fundamentals of computational chemistry through full-day workshops and Summer Schools, which will help their growth in STEM fields.Despite intensive research on lithium-sulfur batteries (LSBs), finding a porous cathode material with a high electrical conductivity that can prevent sulfur shuttling to the anode is still a pressing challenge. The project will address the unique structural and electronic properties of Pi(𝜋)-stacked layered 2D electrically conductive metal-organic frameworks (EC-MOFs) as optimal cathode materials in LSBs. Apart from the apparent advantage of electrical conductivity, the layered architecture of EC-MOFs can endure extreme deformations without mechanical collapse. At the same time, their porous nature allows for efficient encapsulation of the active sulfur material in the cathode providing enhanced resistance toward its dissolution into the electrolyte solution (the shuttling effect). The primary goal of this project is to probe the virtually unlimited chemical space of EC-MOFs to introduce ideal candidates as cathode materials. Since a case-by-case analysis of thousands of EC-MOFs as potential cathode materials is impractical, this research follows two main objectives: (i) creating a comprehensive and expandable database of EC-MOFs with an automated crystal structure creation tool which will be followed by high-throughput screening discovery of EC-MOFs with desired structural and electrical properties; and (ii) investigating sulfur (S8) and its lithium-polysulfide derivatives’ encapsulation and possible transport at the electrode-electrolyte interface from advancedmolecular dynamics simulations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由锂金属阳极和地球丰富的硫阴极组成的锂硫电池(LSB)作为一种有前景的储能候选材料而备受关注。迄今为止,一些挑战和技术障碍阻碍了该合作项目的发展。 Farnaz Shakib 教授(新泽西理工学院)和 Mohammad Momeni(密苏里大学堪萨斯城分校)教授将研究导电材料的设计和应用金属有机框架(EC-MOF)作为 LSB 的阴极材料是一种新型纳米多孔材料,具有极高的表面积和层状结构,可以承受电池运行过程中的机械变形。计算技术来设计和研究新型阴极材料的功能,这将导致设计更高效的清洁能源。在该项目中,研究生将被培训为未来的熟练劳动力。 STEM。本科生和 K-12 级别的学生将通过全天研讨会和暑期学校学习计算化学的基础知识,这将有助于他们在 STEM 领域的成长。尽管对锂硫电池 (LSB) 进行了深入研究,但仍找到了多孔阴极。能够防止硫穿梭到阳极的高电导率材料仍然是一个紧迫的挑战,该项目将解决 Pi(𝜋) 堆叠层状结构的独特结构和电子特性。二维导电金属有机框架(EC-MOF)作为 LSB 的最佳阴极材料,除了具有明显的导电性优势外,EC-MOF 的层状结构还可以承受极端变形而不会发生机械塌陷。性质允许将活性硫材料有效封装在阴极中,从而增强其溶解到电解质溶液中的阻力(穿梭效应)。探索 EC-MOF 几乎无限的化学空间,以引入作为阴极材料的理想候选材料 由于对数千种 EC-MOF 作为潜在阴极材料进行个案分析是不切实际的,因此本研究遵循两个主要目标:(i)使用自动晶体结构创建工具创建一个全面且可扩展的 EC-MOF 数据库,然后高通量筛选发现具有所需结构和电性能的 EC-MOF;以及 (ii) 研究硫; (S8) 及其多硫化锂衍生物的封装以及通过先进的分子动力学模拟在电极-电解质界面上可能的传输。该奖项的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MohammadReza MomeniTaheri其他文献

MohammadReza MomeniTaheri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: 3-D Stellar Hydrodynamics of Convective Penetration and Convective Boundary Mixing in Massive Stars
合作研究:CDS
  • 批准号:
    2309102
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
  • 批准号:
    2302764
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Theory-infused Neural Network (TinNet) for Nonadiabatic Molecular Simulations
合作研究:CDS
  • 批准号:
    2245402
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了