RII Track-2 FEC: Aquatic Intermittency Effects on Microbiomes in Streams (AIMS)

RII Track-2 FEC:水生间歇性对溪流中微生物组的影响 (AIMS)

基本信息

  • 批准号:
    2019603
  • 负责人:
  • 金额:
    $ 599.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Understanding of links among microbial communities (microbiomes), stream health, and water quality relies on studies of perennially flowing streams. However, more than half of global stream-miles do not flow continuously. These intermittent streams occur across the entire country--from western deserts to eastern forests. Despite their ubiquity, research on intermittently flowing streams is impeded by a lack of: 1) physical infrastructure designed to measure intermittency, and 2) scientific training that straddles aquatic and terrestrial ecology. The Aquatic Intermittency effects on Microbiomes in Streams (AIMS) project will address the first obstacle by creating a network of instrumented sites designed to generate “Big Data” to quantify flow intermittency, stream microbiomes, and water quality. AIMS will confront the second obstacle by using its network to provide training in collaborative science and interdisciplinary methods to study intermittent streams, and by providing workforce training in environmental "Big Data" tools through a new On Ramps to Data Science program, which will focus on data generated by microbiome sequencing, environmental sensors, and Geographic Information Systems (GIS). This infrastructure and training will support a team of 18 investigators, including nine early career scientists spanning five EPSCoR jurisdictions (AL, ID, KS, MS, OK). To build capacity in team science, 11 graduate students and two postdoctoral associates will be recruited using a cohort model that will provide cross-jurisdictional training in scientific communication, inclusive mentoring, data management and collaboration. Students will be trained through AIMS Undergraduate Program (AIMS UP), which will recruit participants from regional partners, such as Haskell Indian Nations University, Alabama A&M, and the Shoshone-Bannock Summer Youth Program. Our overarching objective is to create research infrastructure and training capable of integrating big data sources needed to address water quality at the critical nexus between intermittent and perennial streams.Our scientific understanding of streams derives from perennially flowing systems; yet, over half of the world’s streams and rivers only flow intermittently -- a fraction that is projected to increase with climate change. These less-studied intermittent channels form the nexus between terrestrial and aquatic ecosystems and are a potentially important control point for influencing downstream water quality. Furthermore, how hydrology, biogeochemical processes and microbial communities (microbiomes hereafter) interact to affect water quality is likely distinct in intermittent streams compared to perennial streams. The Aquatic Intermittency effects on Microbiomes in Streams (AIMS) project will fill this knowledge gap in order to predict how intermittent streams influence downstream water quality, which requires quantifying how microbiomes and hydrology interact to control biogeochemical cycling and water quality. AIMS will integrate datasets on hydrology, microbiomes, and biogeochemistry in three regions to test the overarching hypothesis that physical drivers (e.g., climate, hydrology) interact with biological drivers (e.g., microbes, biogeochemistry) to control water quality in intermittent streams. Our solution to build scientific capacity and workforce development is to: 1) create a network of instrumented sites to quantify and predict how intermittency controls downstream water quality, 2) educate and train scientists from diverse backgrounds in collaborative science and interdisciplinary methods to study intermittent streams, and 3) provide workforce training in environmental “big data” tools including microbiome sequencing, environmental sensors for hydrology and water quality, and Geographic Information Systems (GIS) through a new program On Ramps to Data Science. The project will support 18 faculty members (50% early-career researchers; ECR) in five EPSCoR jurisdictions (AL, ID, KS, MS, OK), and will hire and train one project manager, two postdoctoral researchers, and 11 graduate students in a collaborative environment. ECRs will benefit from support, mentoring and networking programs, while mid- and late-career faculty will gain new skills focused on Data Science, new skills and new collaborators. The AIMS Undergraduate Program (AIMS UP) will recruit two students per summer from regional partners, such as Haskell Indian Nations University, Alabama A&M, and the Shoshone-Bannock Summer Youth Program. The overarching objective is to create research infrastructure and training capable of integrating data streams needed to address water quality and its links to microbiomes at the critical nexus between intermittent and perennial stream ecosystems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解微生物群落之间的联系(微生物组),流健康和水质依赖于多年生的研究,超过一半的全球流膜不会连续流动。东部森林的沙漠。创建旨在产生不可思议,流微生物组和水质的仪器站点,将面临第二个障碍,即通过使用网络来提供协作和跨学科方法,以通过对数据科学计划进行间歇性的流媒体。关注微生物组测序和地理C信息系统(GIS)。研究生和两名后阶层将使用同类模型进行招募,该模型在科学沟通,数据和协作方面进行了跨司法训练。能够整合大数据来源的培训需要在多年生和多年生的关键联系中进行水质。我们对多年来流动系统流的科学理解;陆生和水生生态系统与存在的是潜在的重要控制点,这是影响水质的潜在重要控制点。流中的微生物(AIMS)项目将知道差距,以便看到下游水质的流,微生物组和水文学如何相互作用,以控制生物技术循环和水质。 (例如,气候,水文学)与生物驱动因素(例如,微生物。尝试)相互作用,以控制间歇流中的水质。间歇性控制下游水质的eRSE背景,以合作的纪律方法来研究间歇性流的“大数据”工具,包括微生物组测序,环境学和水质,地理信息系统(GIS),以及通过对数据CIENTE的坡道上的新程序支持18位EPSCOR司法管辖区(AL,KS,MS,OK)的18位教职员工(50%的早期研究人员; ECR),将雇用和培训一名项目经理,两名博士后研究人员和S的11名研究生将从S中受益支持,指导和网络计划,而后期职业教师将获得专注于数据科学,新技能和合作者的新技能。 - 班诺克夏季青年计划。使用基金会的智力优点和更广泛的影响评估标准进行评估。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Drivers of spatiotemporal patterns of surface water inputs in a catchment at the rain-snow transition zone of the water-limited western United States
美国西部水资源有限的雨雪过渡区流域地表水输入时空模式的驱动因素
  • DOI:
    10.1016/j.jhydrol.2022.128699
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Hale, K.;Kiewiet, L.;Trujillo, E.;Krohe, C.;Hedrick, A.;Marks, D.;Kormos, P.;Havens, S.;McNamara, J.;Link, T.
  • 通讯作者:
    Link, T.
The Drying Regimes of Non‐Perennial Rivers and Streams
非常年河流和溪流的干涸状况
  • DOI:
    10.1029/2021gl093298
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Price, Adam N.;Jones, C. Nathan;Hammond, John C.;Zimmer, Margaret A.;Zipper, Samuel C.
  • 通讯作者:
    Zipper, Samuel C.
Assessing placement bias of the global river gauge network
  • DOI:
    10.1038/s41893-022-00873-0
  • 发表时间:
    2022-04-25
  • 期刊:
  • 影响因子:
    27.6
  • 作者:
    Krabbenhoft, Corey A.;Allen, George H.;Olden, Julian D.
  • 通讯作者:
    Olden, Julian D.
Causes, Responses, and Implications of Anthropogenic versus Natural Flow Intermittence in River Networks
河网中人为与自然流量间歇的原因、响应和影响
  • DOI:
    10.1093/biosci/biac098
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    10.1
  • 作者:
    Datry, Thibault;Truchy, Amélie;Olden, Julian D;Busch, Michelle H;Stubbington, Rachel;Dodds, Walter K;Zipper, Sam;Yu, Songyan;Messager, Mathis L;Tonkin, Jonathan D
  • 通讯作者:
    Tonkin, Jonathan D
Pervasive changes in stream intermittency across the United States
  • DOI:
    10.1088/1748-9326/ac14ec
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Zipper, Samuel C.;Hammond, John C.;Allen, Daniel C.
  • 通讯作者:
    Allen, Daniel C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy Burgin其他文献

Revealing nitrate uptake and dispersion dynamics using high-frequency sensors and two-dimensional modeling in a large river system
使用高频传感器和二维建模揭示大型河流系统中硝酸盐的吸收和扩散动态
  • DOI:
    10.1016/j.advwatres.2024.104693
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Amirreza Zarnaghsh;Michelle Kelly;Amy Burgin;A. Husic
  • 通讯作者:
    A. Husic

Amy Burgin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy Burgin', 18)}}的其他基金

RAPID: Using a drought-enhanced nitrate pulse to understand stream N retention and processing
RAPID:使用干旱增强的硝酸盐脉冲来了解河流氮的保留和处理
  • 批准号:
    1263559
  • 财政年份:
    2012
  • 资助金额:
    $ 599.89万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Coupled C, N and S cycling in coastal plain wetlands: how will climate change and salt water intrusion alter ecosystem dynamics?
合作提案:沿海平原湿地耦合的碳、氮和硫循环:气候变化和咸水入侵将如何改变生态系统动态?
  • 批准号:
    1216916
  • 财政年份:
    2011
  • 资助金额:
    $ 599.89万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Coupled C, N and S cycling in coastal plain wetlands: how will climate change and salt water intrusion alter ecosystem dynamics?
合作提案:沿海平原湿地耦合的碳、氮和硫循环:气候变化和咸水入侵将如何改变生态系统动态?
  • 批准号:
    1021039
  • 财政年份:
    2010
  • 资助金额:
    $ 599.89万
  • 项目类别:
    Standard Grant

相似国自然基金

融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
  • 批准号:
    62373344
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于三维显微图像序列的细胞追踪与迁移行为分析方法
  • 批准号:
    62301296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
  • 批准号:
    82301010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医养结合机构服务模式对老年人健康绩效的影响、机制与引导政策:基于准自然实验的追踪研究
  • 批准号:
    72374125
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
三维黏弹性TTI介质中地震射线追踪及走时成像方法研究
  • 批准号:
    42304060
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RII Track-2 FEC: Rural Confluence: Communities and Academic Partners Uniting to Drive Discovery and Build Capacity for Climate Resilience
合作研究:RII Track-2 FEC:农村融合:社区和学术合作伙伴联合起来推动发现并建设气候适应能力的能力
  • 批准号:
    2316366
  • 财政年份:
    2023
  • 资助金额:
    $ 599.89万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Where We Live: Local and Place Based Adaptation to Climate Change in Underserved Rural Communities
合作研究:RII Track-2 FEC:我们居住的地方:服务不足的农村社区对气候变化的本地和地方适应
  • 批准号:
    2316128
  • 财政年份:
    2023
  • 资助金额:
    $ 599.89万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Where We Live: Local and Place Based Adaptation to Climate Change in Underserved Rural Communities
合作研究:RII Track-2 FEC:我们居住的地方:服务不足的农村社区对气候变化的本地和地方适应
  • 批准号:
    2316126
  • 财政年份:
    2023
  • 资助金额:
    $ 599.89万
  • 项目类别:
    Cooperative Agreement
RII Track-2 FEC: Community-Driven Coastal Climate Research & Solutions for the Resilience of New England Coastal Populations
RII Track-2 FEC:社区驱动的沿海气候研究
  • 批准号:
    2316271
  • 财政年份:
    2023
  • 资助金额:
    $ 599.89万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Supporting rural livelihoods in the water-stressed Central High Plains: Microbial innovations for climate-resilient agriculture (MICRA)
合作研究:RII Track-2 FEC:支持缺水的中部高原地区的农村生计:气候适应型农业的微生物创新 (MICRA)
  • 批准号:
    2316296
  • 财政年份:
    2023
  • 资助金额:
    $ 599.89万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了