Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
基本信息
- 批准号:2018358
- 负责人:
- 金额:$ 34.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical research on complex quantum systems that are in a highly excited or nonequilibrium state. These systems can be realized in a myriad of experimental platforms, and they are also ingredients in the next generation of devices. Theoretical methods to study such systems are, however, still in their infancy. Quantum systems also have a defining feature, called quantum entanglement, that makes them qualitatively different from their classical counterparts. This project will develop theoretical methods to study not only classical metrics of quantum systems such as resistance and viscosity, but will also develop techniques to study quantum entanglement. The study of entanglement is well aligned with the NSF Quantum Leap initiative, whose goal is to push the boundaries of quantum mechanics and its applications to next generation technologies.This project also has a strong educational component as it will lead to the training of the next generation of scientists. The PI and NSF funded research scientists will broaden participation by mentoring high school students through the NYU-GSTEM program. The PI is also committed to organizing a series of conferences that aim to bring together diverse communities of scientists that usually do not have the opportunity to interact, but share the common goal of understanding nonequilibrium phenomena in complex systems. TEHCNICAL SUMMARYThis award supports theoretical research on nonequilibrium phenomena in strongly correlated quantum systems. The project will develop field-theoretic approaches to study transport, correlation functions, and entanglement measures far out of equilibrium. The development of a formalism for studying entanglement measures is well aligned with the NSF Quantum Leaps initiative. The project also applies to current experiments in cold-atomic gases, ultra-fast pump-probe spectroscopy of solid-state systems, and light-matter coupled systems. The project has the following major components: (1) Large-N bosonic and fermionic theories, along with the two-particle irreducible formalism that naturally takes into account conservation laws, will be employed to study nonequilibrium phenomena. Transient conductivity and viscosity following a quantum quench will be studied. Interacting critical systems will be studied, with the goal of searching for new scaling physics out of equilibrium and exploring whether critical slow modes can give rise to anomalies in transport. (2) An augmented Schwinger-Keldysh formalism will be employed to study out of time ordered correlators, and the Renyi entanglement entropy. Controlled weak-coupling expansions will be developed to construct these entanglement measures. The project also has a strong educational component as it will lead to the training of a graduate student and a postdoctoral research scientist. The PI and NSF funded research scientists will broaden participation by mentoring high school students through the NYU-GSTEM program. The PI is also committed to organizing a series of conferences that aim to bring together diverse communities of scientists who share the common goal of understanding nonequilibrium phenomena in complex systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这一奖项支持对处于高度激发或非平衡状态的复杂量子系统的理论研究。这些系统可以在无数的实验平台中实现,并且它们也是下一代设备中的成分。但是,研究此类系统的理论方法仍处于起步阶段。量子系统还具有称为“量子纠缠”的定义特征,这使它们在质上与经典同行不同。该项目将开发理论方法,不仅研究量子系统的经典指标,例如抗性和粘度,而且还将开发研究量子纠缠的技术。纠缠的研究与NSF量子Leap计划非常一致,该计划的目标是将量子力学的界限及其应用推向下一代技术。该项目还具有强大的教育成分,因为它将导致对下一代科学家的培训。 PI和NSF资助的研究科学家将通过NYU-GELSTEM计划指导高中生,扩大参与。 PI还致力于组织一系列会议,旨在将各种科学家社区汇集在一起,这些科学家通常没有机会进行互动,但要分享理解复杂系统中非平衡现象的共同目标。 Tehcnical摘要这一奖项支持有关强相关量子系统中非平衡现象的理论研究。该项目将开发现场理论方法,以研究运输,相关功能和纠缠措施远远超出平衡。用于研究纠缠措施的形式主义的发展与NSF量子飞跃倡议非常一致。该项目还适用于当前在冷原子气体,固态系统的超快速泵送探测和轻度耦合系统中的实验。该项目具有以下主要组成部分:(1)将使用自然考虑保护定律的两个粒子和费米斯理论,以及两粒子不可还原的形式主义,用于研究非平衡现象。将研究量子淬灭后的瞬时电导率和粘度。将研究相互作用的关键系统,目的是从平衡中搜索新的缩放物理,并探索关键的慢速模式是否会导致运输异常。 (2)将采用增强的Schwinger-keldysh形式主义,以在时间订购的相关因子和Renyi纠缠熵中进行研究。将开发受控的弱耦合扩展来构建这些纠缠措施。该项目还具有强大的教育成分,因为它将导致研究生和博士后研究科学家的培训。 PI和NSF资助的研究科学家将通过NYU-GELSTEM计划指导高中生,扩大参与。 PI还致力于组织一系列会议,旨在将各种科学家社区汇集在一起,这些社区共享了理解复杂系统中非质量现象的共同目标。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估来通过评估来支持的。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Traveling discontinuity at the quantum butterfly front
量子蝴蝶前沿的行进不连续性
- DOI:10.21468/scipostphys.15.2.042
- 发表时间:2023
- 期刊:
- 影响因子:5.5
- 作者:Aron, Camille;Brunet, Éric;Mitra, Aditi
- 通讯作者:Mitra, Aditi
Critical properties of the prethermal Floquet time crystal
预热 Floquet 时间晶体的关键特性
- DOI:10.1103/physrevb.103.224311
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Natsheh, Muath;Gambassi, Andrea;Mitra, Aditi
- 通讯作者:Mitra, Aditi
Nonintegrable Floquet Ising model with duality twisted boundary conditions
具有对偶扭曲边界条件的不可积 Floquet Ising 模型
- DOI:10.1103/physrevb.107.245416
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Mitra, Aditi;Yeh, Hsiu-Chung;Yan, Fei;Rosch, Achim
- 通讯作者:Rosch, Achim
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aditi Mitra其他文献
Circumferential Partial-Thickness Burn Caused by Mobile Telephone Charger: A Case Report
- DOI:
10.1016/j.annemergmed.2019.05.026 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:
- 作者:
Carissa Bunke;Andrew N. Hashikawa;Aditi Mitra - 通讯作者:
Aditi Mitra
Floquet Product Mode
Floquet产品模式
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hsiu;Achim Rosch;Aditi Mitra - 通讯作者:
Aditi Mitra
周期駆動された異方的Dirac電子系に現れる多彩な光誘起Weyl半金属相
周期性驱动各向异性狄拉克电子系统中出现的各种光致外尔半金属相
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
奥村 駿;Aditi Mitra;岡 隆史 - 通讯作者:
岡 隆史
Topological transitions and anomalous Hall effect in periodically driven Dirac semimetals
周期性驱动狄拉克半金属中的拓扑转变和反常霍尔效应
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shun Okumura;Aditi Mitra;Takashi Oka - 通讯作者:
Takashi Oka
Tissue Plasminogen Activator-Induced Angioedema in Ischemic Stroke Patient
- DOI:
10.1016/j.chest.2017.08.034 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Aditi Mitra;Vishal Patel - 通讯作者:
Vishal Patel
Aditi Mitra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aditi Mitra', 18)}}的其他基金
Nonequilibrium quantum mechanics of strongly correlated systems
强相关系统的非平衡量子力学
- 批准号:
2316598 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Active and Driven Matter: Connecting Quantum and Classical Systems
主动和驱动物质:连接量子和经典系统
- 批准号:
1921068 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
1607059 - 财政年份:2016
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
1303177 - 财政年份:2013
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
1004589 - 财政年份:2010
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
0705584 - 财政年份:2007
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
相似国自然基金
第二十一届全国凝聚态理论与统计物理学术会议
- 批准号:12342018
- 批准年份:2023
- 资助金额:8.00 万元
- 项目类别:专项项目
非平衡量子开放系统的纯态动力学研究
- 批准号:12305049
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用量子纠缠的视角研究量子多体系统的非平衡动力学
- 批准号:12375027
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
非平衡量子多体体系中的纠缠动力学研究
- 批准号:
- 批准年份:2020
- 资助金额:18 万元
- 项目类别:专项基金项目
非平衡库下量子系统的热力学性质研究
- 批准号:
- 批准年份:2019
- 资助金额:5 万元
- 项目类别:专项基金项目
相似海外基金
数値的に厳密なシミュレーションと非平衡最大仕事に基づく非平衡量子熱力学の研究
基于数值严格模拟和非平衡最大功的非平衡量子热力学研究
- 批准号:
24KJ1373 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Nonequilibrium quantum mechanics of strongly correlated systems
强相关系统的非平衡量子力学
- 批准号:
2316598 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Exploring universal relations in nonequilibrium systems using optimal transport theory
使用最优输运理论探索非平衡系统中的普遍关系
- 批准号:
23K13032 - 财政年份:2023
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
量子協同現象を利用した巨視的量子熱機関の理論
利用量子合作现象的宏观量子热机理论
- 批准号:
22K13971 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theory of multiscale decoherence in open quantum many-body systems
开放量子多体系统中的多尺度退相干理论
- 批准号:
22K13983 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists