Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
基本信息
- 批准号:1607059
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-01 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:The award supports research and education on the dynamics of complex systems where both quantum mechanics as well as strong interactions between many particles are important. This challenging regime has many open questions of relevance for a new generation of experiments and quantum devices. The PI and her research team will study how such systems evolve in time, whether their collective temporal behavior can show some system-independent universal properties, and under what conditions traces of their initial state disappear completely. The projects will bring together concepts from diverse fields of physics.The award has a strong educational component that involves the active participation of graduate and undergraduate students, and a postdoctoral research scientist. The results of the projects will be presented at workshops and conferences, and will be incorporated in a review article in a journal widely read by the community. The project will lead to the development of new theoretical approaches to study the dynamics of complex systems, and will address fundamental questions of relevance to quantum information and quantum computing. The PI will also participate in outreach activities that are part of a continuing partnership between the NYU physics department and local schools.TECHNICAL SUMMARY:The award supports research and education on nonequilibrium phenomena in strongly correlated quantum systems. The focus will be to study quench dynamics in closed and open quantum systems with applications to cold-atomic gases, ultra-fast pump-probe spectroscopy of solid-state systems, and light-matter coupled systems.The project has several components:a) The research team will build on their recent work where universal aging behavior was found after a quantum quench to the critical point of an isolated bosonic O(N) model, and explore similar universality in other kinds of bosonic and fermionic models. Large-N and dimensional expansions methods will be used to study the time-evolution, and to identify scaling behavior at intermediate times, as well as light-cone dynamics.b) The research team will also study the dynamics of entanglement entropy and entanglement spectrum after a quantum quench. This study will be carried out for quenches to the critical point, as well as for interacting one-dimensional systems with strong disorder.c) The research team has access to some exact results for the quench dynamics coming from the large-N limit of interacting field theories. These exact results will be used as a benchmark for developing time-dependent variational methods based on tensor network states.The goal of the projects will be to obtain general results not only on universal dynamics after a quantum quench, but also on the dynamics of entanglement entropy and entanglement spectra. Thus, results will be obtained on how fast information travels after a quantum quench, and how this depends on how excited the system is, its dimensionality, proximity to a critical point, range of interactions, and how ergodic the system is. The project will also result in the development of new methods to study nonequilibrium quantum systems.The award has a strong educational component that involves the active participation of graduate, undergraduate students, and a postdoctoral research scientist. The results of the projects will be presented at workshops and conferences, and will be incorporated in a review article on quantum quenches. The award will lead to the development of new theoretical approaches to study nonequilibrium phenomena. Moreover the PI's study of entanglement dynamics will address fundamental questions of relevance to quantum information and quantum computing. In addition, the PI will participate in outreach activities that are part of a continuing partnership between the NYU physics department and local schools.
非技术摘要:该奖项支持对复杂系统动态的研究和教育,在这些动力学中,量子力学以及许多颗粒之间的强烈相互作用都很重要。这个具有挑战性的制度对新一代实验和量子设备有许多相关性的开放问题。 PI和她的研究团队将研究此类系统如何及时发展,它们的集体时间行为是否可以显示出与系统无关的通用属性,并且在其初始状态的何种条件下,其最初状态的痕迹完全消失了。这些项目将从各种物理学领域汇集概念。该奖项具有强大的教育部分,涉及研究生和本科生的积极参与,以及博士后研究科学家。这些项目的结果将在研讨会和会议上呈现,并将在社区广泛阅读的期刊中的评论文章中纳入。该项目将导致开发新的理论方法来研究复杂系统的动态,并将解决与量子信息和量子计算相关的基本问题。 PI还将参加纽约大学物理系与当地学校之间持续合作伙伴关系的一部分的外展活动。技术摘要:该奖项支持有关密切相关的量子系统中关于非平衡现象的研究和教育。重点将是研究封闭和开放量子系统中的淬火动力学,并应用于冷原子气体,固态系统的超快速泵探针光谱以及轻度耦合系统的静止型,该项目具有多个组成部分。骨气和费米模型。大n和维膨胀方法将用于研究时间进化,并在中间时间以及轻度动力学识别缩放行为。这项研究将进行淬火到临界点,以及具有强大障碍的一维系统的相互作用。这些确切的结果将用作基于张量网络状态的时间依赖性变异方法的基准。项目的目的是,不仅要在量子猝灭后的通用动力学上获得一般结果,还要在纠缠熵和纠缠光谱的动力学上获得一般的结果。因此,将获得有关信息在量子猝灭后的速度传播的结果,以及这如何取决于系统的兴奋程度,其维度,靠近临界点,相互作用的范围以及系统的千式万渐。该项目还将导致开发研究非平衡量子系统的新方法。该奖项具有强大的教育成分,涉及研究生,本科生和一位博士后研究科学家的积极参与。这些项目的结果将在研讨会和会议上呈现,并将在有关量子淬火的评论文章中纳入。该奖项将导致开发新的理论方法来研究非平衡现象。此外,PI对纠缠动态的研究将解决与量子信息和量子计算相关性的基本问题。此外,PI将参加纽约大学物理学系与当地学校之间持续合作的外展活动。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Critical properties of the Floquet time crystal within the Gaussian approximation
高斯近似内 Floquet 时间晶体的关键属性
- DOI:10.1103/physrevb.103.014305
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Natsheh, Muath;Gambassi, Andrea;Mitra, Aditi
- 通讯作者:Mitra, Aditi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aditi Mitra其他文献
Circumferential Partial-Thickness Burn Caused by Mobile Telephone Charger: A Case Report
- DOI:
10.1016/j.annemergmed.2019.05.026 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:
- 作者:
Carissa Bunke;Andrew N. Hashikawa;Aditi Mitra - 通讯作者:
Aditi Mitra
Floquet Product Mode
Floquet产品模式
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hsiu;Achim Rosch;Aditi Mitra - 通讯作者:
Aditi Mitra
周期駆動された異方的Dirac電子系に現れる多彩な光誘起Weyl半金属相
周期性驱动各向异性狄拉克电子系统中出现的各种光致外尔半金属相
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
奥村 駿;Aditi Mitra;岡 隆史 - 通讯作者:
岡 隆史
Topological transitions and anomalous Hall effect in periodically driven Dirac semimetals
周期性驱动狄拉克半金属中的拓扑转变和反常霍尔效应
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shun Okumura;Aditi Mitra;Takashi Oka - 通讯作者:
Takashi Oka
Tissue Plasminogen Activator-Induced Angioedema in Ischemic Stroke Patient
- DOI:
10.1016/j.chest.2017.08.034 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Aditi Mitra;Vishal Patel - 通讯作者:
Vishal Patel
Aditi Mitra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aditi Mitra', 18)}}的其他基金
Nonequilibrium quantum mechanics of strongly correlated systems
强相关系统的非平衡量子力学
- 批准号:
2316598 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
2018358 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Active and Driven Matter: Connecting Quantum and Classical Systems
主动和驱动物质:连接量子和经典系统
- 批准号:
1921068 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
1303177 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
1004589 - 财政年份:2010
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
- 批准号:
0705584 - 财政年份:2007
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
相似国自然基金
第二十一届全国凝聚态理论与统计物理学术会议
- 批准号:12342018
- 批准年份:2023
- 资助金额:8.00 万元
- 项目类别:专项项目
非平衡量子开放系统的纯态动力学研究
- 批准号:12305049
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用量子纠缠的视角研究量子多体系统的非平衡动力学
- 批准号:12375027
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
非平衡量子多体体系中的纠缠动力学研究
- 批准号:
- 批准年份:2020
- 资助金额:18 万元
- 项目类别:专项基金项目
非平衡库下量子系统的热力学性质研究
- 批准号:
- 批准年份:2019
- 资助金额:5 万元
- 项目类别:专项基金项目
相似海外基金
数値的に厳密なシミュレーションと非平衡最大仕事に基づく非平衡量子熱力学の研究
基于数值严格模拟和非平衡最大功的非平衡量子热力学研究
- 批准号:
24KJ1373 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Nonequilibrium quantum mechanics of strongly correlated systems
强相关系统的非平衡量子力学
- 批准号:
2316598 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Exploring universal relations in nonequilibrium systems using optimal transport theory
使用最优输运理论探索非平衡系统中的普遍关系
- 批准号:
23K13032 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
量子協同現象を利用した巨視的量子熱機関の理論
利用量子合作现象的宏观量子热机理论
- 批准号:
22K13971 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theory of multiscale decoherence in open quantum many-body systems
开放量子多体系统中的多尺度退相干理论
- 批准号:
22K13983 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists