Quantum Optics with Ultra-Narrow Gamma Resonances
具有超窄伽马共振的量子光学
基本信息
- 批准号:2012194
- 负责人:
- 金额:$ 42.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Resonance, the strong response of matter to a periodic (oscillating) force in a narrow frequency range (called the "resonance width") in the vicinity of the characteristic frequency of the system (the "resonant frequency"), is a widespread general physical phenomenon. Different types of resonances such as electronic, plasmonic, atomic, and molecular resonances, occur in a wide range of frequencies (from radio frequency to infrared, optical, and ultra-violet), and find numerous applications. For example, they are used to pick up a particular radio station, to generate laser radiation, to detect trace amounts of specific chemical compounds, and to keep a clock ticking at the same rate. Resonance quality factors (defined as the ratio of the resonant frequency to the resonance width) have been achieved as high as 10 to the 17th power (1 followed by 17 zeros) using the electrons inside ultra-cold atoms. By using the atomic nucleus rather than the electrons, researchers funded by this grant are attempting to reach orders of magnitude higher quality factors (such as 10 to the 19th power). These resonances are at x-ray/gamma-ray frequencies rather than at the frequencies corresponding to visible light. Using the nucleus does not require a deep cooling of the atom, and is not limited to small diluted collections of atoms--it can be done in bulk (solid) matter at room temperature. However their investigation is challenging due to the absence of the techniques to produce relatively bright spectrally narrow x-ray/gamma-ray radiation and to control its interaction with the nucleus. This project aims at the development of such techniques and at the demonstration, exploration and applications of the ultra-narrow nuclear gamma-ray resonances. Its successful realization would give strong impetus to the development of quantum nuclear metrologies and technologies, from nuclear clocks to super-resolution nuclear spectrometers, from spectrally enhanced quasi-monochromatic x-ray sources to compact long-lived nuclear quantum memories with potential applications in high-precision tests of fundamental physics, quantum information science, chemistry, biology, medicine, and material nanoscience. The graduate and undergraduate students will be trained in this emerging highly interdisciplinary research field on the borderlines between quantum and x-ray optics by learning the experimental techniques, analytical methods, and numerical modeling. The project consists of two parts. The first one aims at the development of the techniques for coherent control of the spectral content and temporal shape of x-ray radiation via its resonant interaction with nuclear targets. It includes the demonstration of i) slow single gamma-photons propagating through matter with an effective speed of ~30m/s, ii) transparency for the bichromatic gamma-ray photons, iii) quantum nuclear memories, and iv) spectral intensity enhancement of gamma-ray photons. The experiments will be based on the recent theoretical proposals and experimental achievements of the supported research group (X. Zhang et al. Phys. Rev. Lett. 123, 250504 (2019); Y. V. Radeonychev, et al. Phys. Rev. Lett. 124, 163602 (2020)) and performed in the researchers lab at Texas A&M University using a 14.4 keV transition of Iron-57 nuclei with 1.1 MHz radiative line broadening excited with the heralded radioactive source of Cobalt-57. The second part of the project aims at demonstrating the ultra-narrow (0.17Hz) resonance at 12.4 keV for a nuclear transition in Scandium-45. These experiments will be performed at the European XFEL, currently the brightest source of hard x-ray radiation in the range of 10-25 keV photons, while the fabrication and preliminary testing of the required monochromators and beam splitters will be done by the co-PI’s group at the Argonne National Laboratiory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
共振,是物质对系统特征频率(“共振频率”)附近的窄频率范围(称为“共振宽度”)内的周期性(振荡)力的强烈响应,是一种广泛存在的一般物理现象。不同类型的共振,例如电子共振、等离子体共振、原子共振和分子共振,发生在各种频率(从射频到红外线、光学和紫外线)中,并且有许多应用。用于接收特定的无线电台、产生激光辐射、检测痕量的特定化合物以及保持时钟以相同的速率运行。 谐振品质因数(定义为谐振频率与谐振宽度的比率)。 )使用超冷原子内的电子已经达到了高达 10 的 17 次方(1 后面跟着 17 个零)。通过使用原子核而不是电子,由这项资助资助的研究人员正试图达到这个数量级。更高质量因数(例如 10 的 19 次方)。这些共振发生在 X 射线/伽马射线频率,而不是对应于可见光的频率。使用原子核不需要深度冷却,也不需要。仅限于少量稀释的原子集合——它可以在室温下以散装(固体)物质的形式进行,然而,由于缺乏产生相对明亮的光谱窄 X 射线/伽马射线辐射的技术,因此他们的研究具有挑战性。来控制它的相互作用该项目旨在开发此类技术,并致力于超窄核伽马射线共振的演示、探索和应用,其成功实现将有力地推动量子核计量和技术的发展。核钟到超分辨率核光谱仪,从光谱增强准单色X射线源到紧凑型长寿命核量子存储器,在基础物理、量子信息科学、化学、生物学、研究生和本科生将通过学习实验技术、分析方法和数值建模,在这个新兴的高度跨学科的研究领域接受培训,该领域涉及量子和 X 射线光学。第一个目标是开发通过 X 射线辐射与核目标的共振相互作用来相干控制 X 射线辐射的光谱内容和时间形状的技术,它包括演示 i) 慢速单伽马光子在物质中传播。有效速度为~30m/s,ii) 双色伽马射线光子的透明度,iii) 量子核存储器,以及 iv) 伽马射线光子的光谱强度增强。这些实验将基于所支持的最新理论建议和实验成果。研究小组(X.Zhang et al.Phys.Rev.Lett.123, 250504 (2019);Y.V.Radeonychev,et al.Phys.Rev.Lett.123, 250504 (2019) Rev. Lett. 124, 163602 (2020)),并在德克萨斯 A&M 大学的研究人员实验室中使用铁 57 核的 14.4 keV 跃迁进行,其辐射谱线展宽由钴 57 部分的预告放射源激发。该项目旨在展示 12.4 keV 的超窄 (0.17Hz) 共振以实现核跃迁这些实验将在欧洲 XFEL 进行,该实验室是目前 10-25 keV 光子范围内最亮的硬 X 射线辐射源,同时将进行所需单色仪和分束器的制造和初步测试。该奖项由阿贡国家实验室的联合 PI 小组完成。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mutual amplification of high-order harmonics in an optically dressed hydrogenlike plasma-based x-ray laser
- DOI:10.1103/physreva.107.023507
- 发表时间:2023-02
- 期刊:
- 影响因子:2.9
- 作者:I. Khairulin;V. A. Antonov;M. Ryabikin;O. Kocharovskaya
- 通讯作者:I. Khairulin;V. A. Antonov;M. Ryabikin;O. Kocharovskaya
Influence of Detuning of the Seeding VUV Radiation from the Resonance on Formation of Subfemtosecond Pulses in the Active Medium of the Plasma-Based X-Ray Laser Dressed by an Intense IR Field
共振引起的种子 VUV 辐射失谐对强红外场等离子体 X 射线激光器活性介质中亚飞秒脉冲形成的影响
- DOI:10.3103/s1541308x21030079
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Khairulin, I. R.;Antonov, V. A.;Ryabikin, M. Yu.;Kocharovskaya, O. A.
- 通讯作者:Kocharovskaya, O. A.
Temporal and spectral control of the X-ray pulses in a resonant medium with a modulated transition frequency
具有调制跃迁频率的谐振介质中 X 射线脉冲的时间和光谱控制
- DOI:10.1117/12.2593321
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Vagizov, Farit;Antonov, Vladimir;Khairulin, Ilias;Radeonychev, Yevgeny;Han, Kyong-Chol;Kocharovskaya, Olga
- 通讯作者:Kocharovskaya, Olga
Amplification and ellipticity enhancement of high-order harmonics in a neonlike x-ray laser dressed by an IR field
红外场修饰的类氖 X 射线激光器中高次谐波的放大和椭圆度增强
- DOI:10.1103/physreva.107.063511
- 发表时间:2023
- 期刊:
- 影响因子:2.9
- 作者:Antonov, V. A.;Khairulin, I. R.;Ryabikin, M. Yu.;Berrill, M. A.;Shlyaptsev, V. N.;Rocca, J. J.;Kocharovskaya, Оlga
- 通讯作者:Kocharovskaya, Оlga
Formation of Intense Attosecond Pulses in the Sequence of a Resonant Absorber and Active Medium of a Plasma-Based X-Ray Laser Modulated by an Optical Field
- DOI:10.1007/s11141-021-10130-7
- 发表时间:2021-09
- 期刊:
- 影响因子:0.8
- 作者:I. Khairulin;V. Antonov;O. Kocharovskaya
- 通讯作者:I. Khairulin;V. Antonov;O. Kocharovskaya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olga Kocharovskaya其他文献
Olga Kocharovskaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olga Kocharovskaya', 18)}}的其他基金
Quantum Interface between Gamma-Photons - Nuclear Ensembles
伽马光子之间的量子界面 - 核系综
- 批准号:
1506467 - 财政年份:2015
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant
Dynamical Control of Resonant Light-Matter Interaction
共振光-物质相互作用的动态控制
- 批准号:
1307346 - 财政年份:2013
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant
Control of atoms-light and nuclei-X-ray photons interactions in solids via quantum interference
通过量子干涉控制固体中的原子-光和原子核-X 射线光子相互作用
- 批准号:
0855668 - 财政年份:2009
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant
Atomic and Nuclear Interference Phenomena in Solids
固体中的原子和核干涉现象
- 批准号:
0555677 - 财政年份:2006
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant
Coherent Control of Nuclear Transition
核转变的连贯控制
- 批准号:
0245081 - 财政年份:2003
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant
相似国自然基金
基于光学捕获及上转换荧光的光控纳米医疗机器人研究
- 批准号:52373287
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
面向光信息防护的光纤光学视界下非线性孤子碰撞动力学研究
- 批准号:62375080
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
薄膜铌酸锂微腔中光学频率梳产生原理研究
- 批准号:12304421
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肺癌抗微管药物的光学标记与外泌体光学传感
- 批准号:62305273
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于移频环的梳状扫频光源结合光学游标效应面向OCT应用的研究
- 批准号:12304318
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Ultra-stable, phase sensitive, snapshot OCT system enabled by 2-Photon additive manufacturing
通过 2 光子增材制造实现超稳定、相敏、快照 OCT 系统
- 批准号:
10607853 - 财政年份:2023
- 资助金额:
$ 42.62万 - 项目类别:
Leveraging ultra-fast Cherenkov emission in scintillator-based TOF-PET by exploiting photon wavelength classification
通过利用光子波长分类,在基于闪烁体的 TOF-PET 中利用超快切伦科夫发射
- 批准号:
10659114 - 财政年份:2022
- 资助金额:
$ 42.62万 - 项目类别:
Leveraging ultra-fast Cherenkov emission in scintillator-based TOF-PET by exploiting photon wavelength classification
通过利用光子波长分类,在基于闪烁体的 TOF-PET 中利用超快切伦科夫发射
- 批准号:
10431263 - 财政年份:2022
- 资助金额:
$ 42.62万 - 项目类别:
Adaptive Tracking and Quantum Imaging for Protein-Protein Interactions
蛋白质-蛋白质相互作用的自适应跟踪和量子成像
- 批准号:
10706952 - 财政年份:2022
- 资助金额:
$ 42.62万 - 项目类别:
Ultra-bright fluorescent nanoparticles for colorectal adenoma detection
用于结直肠腺瘤检测的超亮荧光纳米粒子
- 批准号:
10217790 - 财政年份:2021
- 资助金额:
$ 42.62万 - 项目类别: