Quantum Optics with Ultra-Narrow Gamma Resonances
具有超窄伽马共振的量子光学
基本信息
- 批准号:2012194
- 负责人:
- 金额:$ 42.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Resonance, the strong response of matter to a periodic (oscillating) force in a narrow frequency range (called the "resonance width") in the vicinity of the characteristic frequency of the system (the "resonant frequency"), is a widespread general physical phenomenon. Different types of resonances such as electronic, plasmonic, atomic, and molecular resonances, occur in a wide range of frequencies (from radio frequency to infrared, optical, and ultra-violet), and find numerous applications. For example, they are used to pick up a particular radio station, to generate laser radiation, to detect trace amounts of specific chemical compounds, and to keep a clock ticking at the same rate. Resonance quality factors (defined as the ratio of the resonant frequency to the resonance width) have been achieved as high as 10 to the 17th power (1 followed by 17 zeros) using the electrons inside ultra-cold atoms. By using the atomic nucleus rather than the electrons, researchers funded by this grant are attempting to reach orders of magnitude higher quality factors (such as 10 to the 19th power). These resonances are at x-ray/gamma-ray frequencies rather than at the frequencies corresponding to visible light. Using the nucleus does not require a deep cooling of the atom, and is not limited to small diluted collections of atoms--it can be done in bulk (solid) matter at room temperature. However their investigation is challenging due to the absence of the techniques to produce relatively bright spectrally narrow x-ray/gamma-ray radiation and to control its interaction with the nucleus. This project aims at the development of such techniques and at the demonstration, exploration and applications of the ultra-narrow nuclear gamma-ray resonances. Its successful realization would give strong impetus to the development of quantum nuclear metrologies and technologies, from nuclear clocks to super-resolution nuclear spectrometers, from spectrally enhanced quasi-monochromatic x-ray sources to compact long-lived nuclear quantum memories with potential applications in high-precision tests of fundamental physics, quantum information science, chemistry, biology, medicine, and material nanoscience. The graduate and undergraduate students will be trained in this emerging highly interdisciplinary research field on the borderlines between quantum and x-ray optics by learning the experimental techniques, analytical methods, and numerical modeling. The project consists of two parts. The first one aims at the development of the techniques for coherent control of the spectral content and temporal shape of x-ray radiation via its resonant interaction with nuclear targets. It includes the demonstration of i) slow single gamma-photons propagating through matter with an effective speed of ~30m/s, ii) transparency for the bichromatic gamma-ray photons, iii) quantum nuclear memories, and iv) spectral intensity enhancement of gamma-ray photons. The experiments will be based on the recent theoretical proposals and experimental achievements of the supported research group (X. Zhang et al. Phys. Rev. Lett. 123, 250504 (2019); Y. V. Radeonychev, et al. Phys. Rev. Lett. 124, 163602 (2020)) and performed in the researchers lab at Texas A&M University using a 14.4 keV transition of Iron-57 nuclei with 1.1 MHz radiative line broadening excited with the heralded radioactive source of Cobalt-57. The second part of the project aims at demonstrating the ultra-narrow (0.17Hz) resonance at 12.4 keV for a nuclear transition in Scandium-45. These experiments will be performed at the European XFEL, currently the brightest source of hard x-ray radiation in the range of 10-25 keV photons, while the fabrication and preliminary testing of the required monochromators and beam splitters will be done by the co-PI’s group at the Argonne National Laboratiory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
共振,物质对系统特征频率附近(“共振频率”)附近的频率范围(称为“共振宽度”)的周期性(称为“共振宽度”)的强烈响应是一种宽度普遍的物理现象。不同类型的共振,例如电子,等离子,原子和分子共振,以广泛的频率(从射频到红外,光学和超紫)出现,并找到许多应用。例如,它们用于拾取特定的广播电台,以生成激光辐射,检测痕量的特定化合物,并以相同的速率保持时钟滴答。共振质量因子(定义为谐振频率与共振宽度的比率)已获得高达10的功率,即使用Ultra-Cold原子中的电子(17零,其次是17个零)。通过使用原子核而不是电子,该赠款资助的研究人员试图达到更高质量因素(例如第19个权力的10)。这些共振在X射线/伽马射线频率上,而不是在与可见光相对应的频率上。使用原子核不需要原子的深冷却,并且不仅限于稀释的原子集合 - 它可以在室温下以批量(固体)物质进行。然而,由于缺乏产生相关光谱狭窄的X射线/伽马射线辐射并控制其与核us的相互作用的技术,他们的研究具有挑战性。该项目旨在开发此类技术以及超纳罗核伽马射线共振的演示,勘探和应用。它的成功实现将为从核时钟到超分辨率核谱仪的量子核计量学和技术的发展提供强大的推动力,从光谱增强的准单色X射线源到紧凑的长期核量子记忆,再到潜在的核量子记忆,以及潜在的应用在高精度物理学中的潜在应用,量子物理学,量子信息科学,化学,化学,化学,化学,化学,化学,化学,化学,化学,化学,化学,化学。通过学习实验技术,分析方法和数值建模,将在这个新兴的跨学科研究领域中对这个新兴的跨学科研究领域进行培训。该项目由两个部分组成。第一个旨在开发技术通过与核靶点的谐振相互作用来对频谱含量的相干控制和临时形状。它包括i)慢慢通过物质传播的慢速单γ-光子,有效速度约为30m/s,ii)双裂γ射线照片的透明度,iii)量子核记忆和iv)gamma-ray照片的光谱强度增强。实验将基于受支持研究小组的最新理论建议和实验成就(X.具有1.1 MHz放射性线的核里与钴57的宣告放射源激发。该项目的第二部分旨在证明在Scandium-45进行核过渡的超鼻涕(0.17Hz)共振。这些实验将在欧洲XFEL上进行,目前,目前是10-25 keV照片范围内最明亮的X射线辐射的来源,而Co-Pi小组将在Argonne National Laboration上进行的Co-Pi小组对所需的单色器和光束拆分器进行制造和初步测试。影响审查标准。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mutual amplification of high-order harmonics in an optically dressed hydrogenlike plasma-based x-ray laser
- DOI:10.1103/physreva.107.023507
- 发表时间:2023-02
- 期刊:
- 影响因子:2.9
- 作者:I. Khairulin;V. A. Antonov;M. Ryabikin;O. Kocharovskaya
- 通讯作者:I. Khairulin;V. A. Antonov;M. Ryabikin;O. Kocharovskaya
Influence of Detuning of the Seeding VUV Radiation from the Resonance on Formation of Subfemtosecond Pulses in the Active Medium of the Plasma-Based X-Ray Laser Dressed by an Intense IR Field
共振引起的种子 VUV 辐射失谐对强红外场等离子体 X 射线激光器活性介质中亚飞秒脉冲形成的影响
- DOI:10.3103/s1541308x21030079
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Khairulin, I. R.;Antonov, V. A.;Ryabikin, M. Yu.;Kocharovskaya, O. A.
- 通讯作者:Kocharovskaya, O. A.
Temporal and spectral control of the X-ray pulses in a resonant medium with a modulated transition frequency
具有调制跃迁频率的谐振介质中 X 射线脉冲的时间和光谱控制
- DOI:10.1117/12.2593321
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Vagizov, Farit;Antonov, Vladimir;Khairulin, Ilias;Radeonychev, Yevgeny;Han, Kyong-Chol;Kocharovskaya, Olga
- 通讯作者:Kocharovskaya, Olga
Amplification and ellipticity enhancement of high-order harmonics in a neonlike x-ray laser dressed by an IR field
红外场修饰的类氖 X 射线激光器中高次谐波的放大和椭圆度增强
- DOI:10.1103/physreva.107.063511
- 发表时间:2023
- 期刊:
- 影响因子:2.9
- 作者:Antonov, V. A.;Khairulin, I. R.;Ryabikin, M. Yu.;Berrill, M. A.;Shlyaptsev, V. N.;Rocca, J. J.;Kocharovskaya, Оlga
- 通讯作者:Kocharovskaya, Оlga
Attosecond-pulse formation in the water-window range by an optically dressed hydrogen-like plasma-based C5+ x-ray laser
- DOI:10.1103/physreva.102.063528
- 发表时间:2020-10
- 期刊:
- 影响因子:2.9
- 作者:V. Antonov;I. Khairulin;O. Kocharovskaya
- 通讯作者:V. Antonov;I. Khairulin;O. Kocharovskaya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olga Kocharovskaya其他文献
Olga Kocharovskaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olga Kocharovskaya', 18)}}的其他基金
Quantum Interface between Gamma-Photons - Nuclear Ensembles
伽马光子之间的量子界面 - 核系综
- 批准号:
1506467 - 财政年份:2015
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant
Dynamical Control of Resonant Light-Matter Interaction
共振光-物质相互作用的动态控制
- 批准号:
1307346 - 财政年份:2013
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant
Control of atoms-light and nuclei-X-ray photons interactions in solids via quantum interference
通过量子干涉控制固体中的原子-光和原子核-X 射线光子相互作用
- 批准号:
0855668 - 财政年份:2009
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant
Atomic and Nuclear Interference Phenomena in Solids
固体中的原子和核干涉现象
- 批准号:
0555677 - 财政年份:2006
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant
Coherent Control of Nuclear Transition
核转变的连贯控制
- 批准号:
0245081 - 财政年份:2003
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant
相似国自然基金
激光成丝超连续光谱及中红外少光学周期超快激光同步产生技术研究
- 批准号:62375154
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
基于深度光学的大视场高分辨宽景深小型化显微成像
- 批准号:62301293
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
基于贝塞尔光束的非远心光学系统及其在肿瘤双光子光动力治疗中的应用研究
- 批准号:62375169
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
肿瘤微环境响应型近红外二区光学探针的设计及其用于肿瘤精准诊断研究
- 批准号:52373141
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
介质-金属混合纳米腔与二维材料的相互作用及其光学调控
- 批准号:12374347
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Ultra-stable, phase sensitive, snapshot OCT system enabled by 2-Photon additive manufacturing
通过 2 光子增材制造实现超稳定、相敏、快照 OCT 系统
- 批准号:
10607853 - 财政年份:2023
- 资助金额:
$ 42.62万 - 项目类别:
Leveraging ultra-fast Cherenkov emission in scintillator-based TOF-PET by exploiting photon wavelength classification
通过利用光子波长分类,在基于闪烁体的 TOF-PET 中利用超快切伦科夫发射
- 批准号:
10659114 - 财政年份:2022
- 资助金额:
$ 42.62万 - 项目类别:
Leveraging ultra-fast Cherenkov emission in scintillator-based TOF-PET by exploiting photon wavelength classification
通过利用光子波长分类,在基于闪烁体的 TOF-PET 中利用超快切伦科夫发射
- 批准号:
10431263 - 财政年份:2022
- 资助金额:
$ 42.62万 - 项目类别:
Adaptive Tracking and Quantum Imaging for Protein-Protein Interactions
蛋白质-蛋白质相互作用的自适应跟踪和量子成像
- 批准号:
10706952 - 财政年份:2022
- 资助金额:
$ 42.62万 - 项目类别:
Ultra-bright fluorescent nanoparticles for colorectal adenoma detection
用于结直肠腺瘤检测的超亮荧光纳米粒子
- 批准号:
10217790 - 财政年份:2021
- 资助金额:
$ 42.62万 - 项目类别: