Quantum Interface between Gamma-Photons - Nuclear Ensembles
伽马光子之间的量子界面 - 核系综
基本信息
- 批准号:1506467
- 负责人:
- 金额:$ 26.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The elementary particles or "quanta" of light have a wavelength of about 500 nanometers (less than 20 millionths of an inch). The study of the interaction of these photons with the electrons inside atoms led to development of devices such as lasers, atomic clocks, supersensitive miniature magnetometers, etc. The goal of the present project is to extend these studies to photons of much shorter wavelengths: 10,000 to 100,000 times shorter. These photons, invisible to the naked eye, begin to enter the regime where they are known as "gamma-photons" or "gamma-rays." Rather than interacting with the electrons inside atoms, these high energy photons interact with the nucleus of the atom. Some of the reasons gamma-photons might be better than conventional (optical) photons for applications is that they can be detected more easily, they can be focused to much smaller spots (ultimately limited by the wavelength of the photon), and they can in principle help process information more quickly because of their higher frequencies. A problem is that they are currently very difficult and expensive to produce and hard to control precisely because conventional optical lenses and mirrors do not work at such short wavelengths. This work seeks to advance the development of compact ("table-top") sources of highly controlled gamma-photons, both through experiments and theoretical work. In effect, this work seeks to extend the field of "quantum optics" to wavelengths approaching the gamma-ray regime. If successful, the work may find applications in the areas of quantum information science, spectroscopy, microscopy, metrology, and sensors. The proposed joint theoretical and experimental research program will provide training for graduate and undergraduate students in the emerging field of the experimental and theoretical quantum gamma-optics as well as in the related (and more general) experimental techniques, analytical methods, and numerical modeling.The project is focused on the experimental and theoretical development of methods to coherently control the interaction of gamma-photons with nuclear ensembles via the variation of the resonant frequency of the nuclear transition in the laboratory reference frame. This variation is achieved via the Doppler shift associated with precisely vibrating the solid through which the photon passes. This is used in conjunction with a source of heralded single photons provided by the essentially simultaneous emission of two photons at 122 keV and 14.4 keV via the natural radioactive decay of Cobalt-57. The advantages of nuclear transitions over electronic transitions is that they have narrow, lifetime-broadened spectral linewidths in bulk solids at room temperature (due to the large mass and small size of nucleons, shielding from the environment, and recoilless absorption due to the Mossbauer effect). This results in orders-of-magnitude stronger interaction of the photons with the nuclear ensemble. Progress has been limited, however, by the absence of bright coherent sources and high finesse resonators in the desired short wavelength range. The present work is based on the lead scientist's recent realization of a table-top source of ultra-short photon sources in the 14.4 keV range with coherent properties, as well as the demonstration of efficient control of single gamma-photon waveforms (F. Vagizov et al., Nature, vol. 508| 3 April 2014, p. 80). The technical and fundamental limitations of the technique as presently developed will be explored and new techniques for the production of short intense pulses and single gamma-photon shaping will be developed. Applications for the controlled single-photon waveforms will be explored in the areas of quantum information science.
基本粒子或光的“量子”的波长约为 500 纳米(小于百万分之二十英寸)。 对这些光子与原子内电子相互作用的研究促进了激光器、原子钟、超灵敏微型磁力计等设备的发展。本项目的目标是将这些研究扩展到波长更短的光子:10,000缩短至 100,000 倍。这些肉眼看不见的光子开始进入被称为“伽马光子”或“伽马射线”的区域。这些高能光子不是与原子内部的电子相互作用,而是与原子核相互作用。伽马光子在应用中可能比传统(光学)光子更好的一些原因是它们可以更容易地被检测到,它们可以聚焦到更小的点(最终受到光子波长的限制),并且它们可以由于频率较高,原理有助于更快地处理信息。 问题是,目前它们的生产非常困难且昂贵,并且难以精确控制,因为传统的光学透镜和镜子不能在如此短的波长下工作。 这项工作旨在通过实验和理论工作来推进紧凑(“桌面”)高度受控伽马光子源的开发。 实际上,这项工作旨在将“量子光学”领域扩展到接近伽马射线范围的波长。 如果成功,这项工作可能会在量子信息科学、光谱学、显微镜、计量学和传感器领域得到应用。拟议的联合理论和实验研究计划将为研究生和本科生提供实验和理论量子伽马光学新兴领域以及相关(和更一般的)实验技术、分析方法和数值建模的培训。该项目的重点是通过实验室参考系中核跃迁共振频率的变化来连贯控制伽马光子与核系综相互作用的方法的实验和理论开发。 这种变化是通过与光子穿过的固体的精确振动相关的多普勒频移来实现的。 它与单光子源结合使用,该单光子源通过 Cobalt-57 的自然放射性衰变基本上同时发射 122 keV 和 14.4 keV 的两个光子。 核跃迁相对于电子跃迁的优点在于,它们在室温下的块状固体中具有窄的、寿命展宽的光谱线宽(由于核子质量大、尺寸小、对环境的屏蔽以及由于穆斯堡尔效应而产生的无反冲吸收) )。这导致光子与核系综的相互作用增强了几个数量级。然而,由于缺乏所需的短波长范围内的明亮相干光源和高精度谐振器,进展受到限制。 目前的工作基于首席科学家最近实现的 14.4 keV 范围内具有相干特性的超短光子源的桌面源,以及对单伽马光子波形的有效控制的演示(F. Vagizov)等人,《自然》,第 508 卷|2014 年 4 月 3 日,第 80 页)。目前开发的技术的技术和基本局限性将被探索,并且将开发用于产生短强脉冲和单伽马光子整形的新技术。 将在量子信息科学领域探索受控单光子波形的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olga Kocharovskaya其他文献
Olga Kocharovskaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olga Kocharovskaya', 18)}}的其他基金
Quantum Optics with Ultra-Narrow Gamma Resonances
具有超窄伽马共振的量子光学
- 批准号:
2012194 - 财政年份:2020
- 资助金额:
$ 26.62万 - 项目类别:
Standard Grant
Dynamical Control of Resonant Light-Matter Interaction
共振光-物质相互作用的动态控制
- 批准号:
1307346 - 财政年份:2013
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
Control of atoms-light and nuclei-X-ray photons interactions in solids via quantum interference
通过量子干涉控制固体中的原子-光和原子核-X 射线光子相互作用
- 批准号:
0855668 - 财政年份:2009
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
Atomic and Nuclear Interference Phenomena in Solids
固体中的原子和核干涉现象
- 批准号:
0555677 - 财政年份:2006
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
Coherent Control of Nuclear Transition
核转变的连贯控制
- 批准号:
0245081 - 财政年份:2003
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
相似国自然基金
自旋极化电子视角下MoS2/C电极磁化强度与界面快速储锂之间的构效关系
- 批准号:22309076
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氧化镓纳米结构之间接触界面导热机理及调控研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自支撑超薄膜与基底之间界面吸附能的定量测量和机理研究
- 批准号:12072111
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
陶瓷类无机固体电解质隔膜的自致密烧结机理及其与金属锂负极之间的固/固界面研究
- 批准号:21975284
- 批准年份:2019
- 资助金额:65 万元
- 项目类别:面上项目
金属材料超声强化表/界面特性与其使役性能之间的内在关系研究
- 批准号:51975421
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
A prototype interface between neutral-atom quantum processors and superconducting circuits
中性原子量子处理器和超导电路之间的原型接口
- 批准号:
EP/Y022688/1 - 财政年份:2024
- 资助金额:
$ 26.62万 - 项目类别:
Research Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
- 批准号:
EP/W035839/2 - 财政年份:2024
- 资助金额:
$ 26.62万 - 项目类别:
Research Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
- 批准号:
EP/W035839/1 - 财政年份:2023
- 资助金额:
$ 26.62万 - 项目类别:
Research Grant
On the interface between Quantum and Algorithmic Information Theory
论量子与算法信息论的接口
- 批准号:
567715-2022 - 财政年份:2022
- 资助金额:
$ 26.62万 - 项目类别:
Postgraduate Scholarships - Doctoral
Fabrication and understanding the interface junction between atomic layers and 3D solids
制造并理解原子层和 3D 实体之间的界面连接
- 批准号:
19K15393 - 财政年份:2019
- 资助金额:
$ 26.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists