Quantum Interface between Gamma-Photons - Nuclear Ensembles
伽马光子之间的量子界面 - 核系综
基本信息
- 批准号:1506467
- 负责人:
- 金额:$ 26.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The elementary particles or "quanta" of light have a wavelength of about 500 nanometers (less than 20 millionths of an inch). The study of the interaction of these photons with the electrons inside atoms led to development of devices such as lasers, atomic clocks, supersensitive miniature magnetometers, etc. The goal of the present project is to extend these studies to photons of much shorter wavelengths: 10,000 to 100,000 times shorter. These photons, invisible to the naked eye, begin to enter the regime where they are known as "gamma-photons" or "gamma-rays." Rather than interacting with the electrons inside atoms, these high energy photons interact with the nucleus of the atom. Some of the reasons gamma-photons might be better than conventional (optical) photons for applications is that they can be detected more easily, they can be focused to much smaller spots (ultimately limited by the wavelength of the photon), and they can in principle help process information more quickly because of their higher frequencies. A problem is that they are currently very difficult and expensive to produce and hard to control precisely because conventional optical lenses and mirrors do not work at such short wavelengths. This work seeks to advance the development of compact ("table-top") sources of highly controlled gamma-photons, both through experiments and theoretical work. In effect, this work seeks to extend the field of "quantum optics" to wavelengths approaching the gamma-ray regime. If successful, the work may find applications in the areas of quantum information science, spectroscopy, microscopy, metrology, and sensors. The proposed joint theoretical and experimental research program will provide training for graduate and undergraduate students in the emerging field of the experimental and theoretical quantum gamma-optics as well as in the related (and more general) experimental techniques, analytical methods, and numerical modeling.The project is focused on the experimental and theoretical development of methods to coherently control the interaction of gamma-photons with nuclear ensembles via the variation of the resonant frequency of the nuclear transition in the laboratory reference frame. This variation is achieved via the Doppler shift associated with precisely vibrating the solid through which the photon passes. This is used in conjunction with a source of heralded single photons provided by the essentially simultaneous emission of two photons at 122 keV and 14.4 keV via the natural radioactive decay of Cobalt-57. The advantages of nuclear transitions over electronic transitions is that they have narrow, lifetime-broadened spectral linewidths in bulk solids at room temperature (due to the large mass and small size of nucleons, shielding from the environment, and recoilless absorption due to the Mossbauer effect). This results in orders-of-magnitude stronger interaction of the photons with the nuclear ensemble. Progress has been limited, however, by the absence of bright coherent sources and high finesse resonators in the desired short wavelength range. The present work is based on the lead scientist's recent realization of a table-top source of ultra-short photon sources in the 14.4 keV range with coherent properties, as well as the demonstration of efficient control of single gamma-photon waveforms (F. Vagizov et al., Nature, vol. 508| 3 April 2014, p. 80). The technical and fundamental limitations of the technique as presently developed will be explored and new techniques for the production of short intense pulses and single gamma-photon shaping will be developed. Applications for the controlled single-photon waveforms will be explored in the areas of quantum information science.
光的基本颗粒或“量子”的波长约为500纳米(少于2000万分之一英寸)。 研究这些光子与原子内部的电子的相互作用的研究导致了激光器,原子钟,超敏感的微型磁力计等设备的开发。本项目的目的是将这些研究扩展到较短波长的光子:10,000至100,000倍的光子。这些光子是肉眼看不见的,开始进入该政权,在该政策中,它们被称为“伽马仪”或“伽马射线”。这些高能光子与原子内部的电子相互作用,而是与原子的核相互作用。伽玛 - 光子可能比用于应用程序的常规(光学)光子更好的原因是,它们可以更容易检测到它们,它们可以专注于较小的斑点(最终受光子波长的限制),而原则上可以更快地帮助处理信息,因为它们的频率较高。 一个问题是,它们目前非常困难且昂贵,并且很难控制,因为传统的光镜和镜子在如此短的波长下无法正常工作。 这项工作旨在通过实验和理论工作来推动高度控制的γ-光子的紧凑型(“桌面”)来源的发展。 实际上,这项工作旨在将“量子光学”的领域扩展到接近伽玛射线制度的波长。 如果成功,这项工作可能会在量子信息科学,光谱,显微镜,计量器和传感器领域找到应用。拟议的联合理论和实验研究计划将为实验和理论量子γ-启示的新兴领域以及相关(和更一般的)实验技术,分析方法以及数值建模的培训提供培训。项目通过实验性和理论进行了核能,以对核定的核能进行核对的核能,从而对其进行核对的核能进行核对。实验室参考框架中核转变的谐振频率。 这种变化是通过与精确振动光子通过的固体相关的多普勒移位实现的。 这与通过钴57的自然放射性衰变在122 keV和14.4 keV的基本上同时发射两个光子和14.4 keV的源头结合使用。 核转变比电子过渡的优点在于,它们在室温下具有较窄的,终生的光谱线宽(由于核子的质量较大和较小的核子,避开环境,以及由于Mossbauer效应而引起的重新稳定吸收)。这会导致光子与核合管的相互作用更强。然而,由于缺乏明亮的相干来源和所需短波长范围内的高技巧谐振器,进度受到了限制。 本工作是基于主要科学家在14.4 keV范围内对具有相干性能的14.4 keV范围内的台式台式源的实现,以及对单个伽玛 - 光子波形的有效控制(F. Vagizov等人,自然,2014年4月3日,2014年4月3日,第80页)。将探索目前开发的技术的技术和基本局限性,并将开发出用于产生短脉冲和单个伽玛 - 光子塑料的新技术。 量子信息科学领域将探索受控单光子波形的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olga Kocharovskaya其他文献
Olga Kocharovskaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olga Kocharovskaya', 18)}}的其他基金
Quantum Optics with Ultra-Narrow Gamma Resonances
具有超窄伽马共振的量子光学
- 批准号:
2012194 - 财政年份:2020
- 资助金额:
$ 26.62万 - 项目类别:
Standard Grant
Dynamical Control of Resonant Light-Matter Interaction
共振光-物质相互作用的动态控制
- 批准号:
1307346 - 财政年份:2013
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
Control of atoms-light and nuclei-X-ray photons interactions in solids via quantum interference
通过量子干涉控制固体中的原子-光和原子核-X 射线光子相互作用
- 批准号:
0855668 - 财政年份:2009
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
Atomic and Nuclear Interference Phenomena in Solids
固体中的原子和核干涉现象
- 批准号:
0555677 - 财政年份:2006
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
Coherent Control of Nuclear Transition
核转变的连贯控制
- 批准号:
0245081 - 财政年份:2003
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
相似国自然基金
自旋极化电子视角下MoS2/C电极磁化强度与界面快速储锂之间的构效关系
- 批准号:22309076
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氧化镓纳米结构之间接触界面导热机理及调控研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氧化镓纳米结构之间接触界面导热机理及调控研究
- 批准号:52206080
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
自支撑超薄膜与基底之间界面吸附能的定量测量和机理研究
- 批准号:12072111
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
陶瓷类无机固体电解质隔膜的自致密烧结机理及其与金属锂负极之间的固/固界面研究
- 批准号:21975284
- 批准年份:2019
- 资助金额:65 万元
- 项目类别:面上项目
相似海外基金
A prototype interface between neutral-atom quantum processors and superconducting circuits
中性原子量子处理器和超导电路之间的原型接口
- 批准号:
EP/Y022688/1 - 财政年份:2024
- 资助金额:
$ 26.62万 - 项目类别:
Research Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
- 批准号:
EP/W035839/2 - 财政年份:2024
- 资助金额:
$ 26.62万 - 项目类别:
Research Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
- 批准号:
EP/W035839/1 - 财政年份:2023
- 资助金额:
$ 26.62万 - 项目类别:
Research Grant
On the interface between Quantum and Algorithmic Information Theory
论量子与算法信息论的接口
- 批准号:
567715-2022 - 财政年份:2022
- 资助金额:
$ 26.62万 - 项目类别:
Postgraduate Scholarships - Doctoral
Fabrication and understanding the interface junction between atomic layers and 3D solids
制造并理解原子层和 3D 实体之间的界面连接
- 批准号:
19K15393 - 财政年份:2019
- 资助金额:
$ 26.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists