CAREER: Mesoscopic Quantum Opto-Electronics in Gate-Defined Transition Metal Dichacogenide Nanostructures

职业:栅极定义的过渡金属二硫族化物纳米结构中的介观量子光电子学

基本信息

  • 批准号:
    1944498
  • 负责人:
  • 金额:
    $ 59.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The electronic properties of a solid can undergo dramatic change when its thickness is reduced to the atomic limit. A family of semiconductors with single-atom thickness, transition metal dichalcogenides (TMD), host unique electronic and optical properties that can potentially provide solutions to many remaining challenges in future electronics and computing platforms. This CAREER project investigates these novel material properties with versatile experimental control, towards understanding and harnessing them in realizing novel device concepts with improved performance and operation schemes. The research underpins electronic device applications that can be particularly relevant in low energy electronics and sensing. If successful, the project also lays a foundation towards future semiconductor-based computing platforms that promises (1) smaller device dimensions and higher-level integration, (2) new computation paradigms with higher computational power and efficiency, and (3) new communication protocols with enhanced information security. Multiple graduate students, and undergraduates are being educated through this project in an interdisciplinary research environment. A series of educational and outreach efforts are being implemented, aimed towards enhanced training of the next generation scientific and engineering work-force, including (1) development of a new course on device physics directed towards an interdisciplinary student audience, (2) enhancing the well-established "Method for Experimental Physics" course by providing a new module of low-temperature physics experiments for physics undergraduate students, (3) and recruitment of underrepresented groups into interdisciplinary research and partnership with the Science Museum of Minnesota on K-12 education and outreach, promoting public awareness toward the advanced nanotechnologies and solid-state physics. Electron spins – a form of quantized angular momentum, are widely used to define the 0 and 1 states of a single quantum bit. In transition metal dichalcogenides (TMDs), the electron spin is effectively locked to another quantum degree of freedom, valley. This provides new ways of defining and manipulating a spin-valley quantum bit with potentially enhanced life time and robustness, as it is much more difficult to accidentally flip the valley quantum degree of freedom with electrical and magnetic fluctuations. In addition, the in-plane electrostatic interactions in TMDs are much stronger compared to conventional semiconductors, allowing controllable light-matter interaction. This can be utilized to convert the electronic quantum information to photonic states, a process essential for long distance quantum communication between future electronic quantum computers. This CAREER research focuses on studying exotic quantum phenomena in gate-defined TMD nanostructures via electrical and optical quantum measurements and providing proof-of-principle demonstration of new quantum device functionalities, such as manipulation of the combined spin-valley quantum degree of freedom, tunable strong in-plane and vertical electron coupling, and coherence transduction of quantum information between electronic and optical states. By studying electrostatically-controlled quantum tunneling processes, this CAREER project also provides sensitive characterization of material metrics associated with small energy scales that are difficult to access with conventional transport and optical studies. The more complicated gate-defined nanostructures provide platforms to study novel spin-valley-locked Coulomb drag and spin-valley polarized mesoscopic quantum physics, which provides a basis for novel quantum device concepts such as valleytronics and spin-valley qubits. Gate-defined quantum confinement and manipulation of optical excitations allow the study of novel exciton and condensate physics with tunable confinement-enhanced large exciton binding energy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当固体的厚度减小到原子极限时,其电子特性会发生巨大的变化,过渡金属二硫化物 (TMD) 等单原子厚度的半导体具有独特的电子和光学特性,可以为许多问题提供解决方案。该职业项目通过多功能实验控制来研究这些新颖的材料特性,理解并利用它们来实现具有改进的性能和操作方案的新颖设备概念。如果成功,该项目还将为未来基于半导体的计算平台奠定基础,该平台有望(1)更小的设备尺寸和更高级别的集成,(2)具有更高计算能力和效率的新计算范例,以及(3) 具有增强信息安全性的新通信协议。正在通过该项目在跨学科研究环境中对多名研究生和本科生进行教育,旨在加强对下一代科学和技术的培训。工程人员,包括(1)开发针对跨学科学生受众的器件物理新课程,(2) 通过为物理本科生提供新的低温物理实验模块,加强完善的“实验物理方法”课程,(3) 并招募代表性不足的学生小组参与跨学科研究并与明尼苏达州科学博物馆合作开展 K-12 教育和推广活动,提高公众对先进纳米技术和固态物理学的认识。电子自旋(一种量子化角动量的形式)被广泛用于定义单个量子位的 0 和 1 态 在过渡金属二硫化物 (TMD) 中,电子自旋被有效地锁定到另一个量子自由度,这提供了定义和操纵自旋谷量子位的新方法。潜在地延长了使用寿命和鲁棒性,因为由于电和磁波动而意外翻转谷量子自由度要困难得多。此外,TMD 中的面内静电相互作用比传统半导体强得多,从而允许。这可用于将电子量子信息转换为光子态,这是未来电子量子计算机之间的长距离量子通信所必需的过程,这项职业研究的重点是通过门定义的 TMD 纳米结构来研究奇异的量子现象。电和光量子测量,并提供新量子器件功能的原理验证演示,例如组合自旋谷量子自由度的操纵、可调谐的强面内和垂直电子耦合以及量子信息的相干转导通过研究静电控制的量子隧道过程,该职业项目还提供了与小能量尺度相关的材料指标的敏感表征,而传统的传输和光学研究很难获得更复杂的栅极定义的纳米结构。研究新型自旋谷锁定库仑阻力和自旋谷偏振介观量子物理的平台,为谷电子学和自旋谷量子位等新型量子器件概念提供了基础。光激发和操纵允许研究具有可调约束增强大激子结合能的新型激子和凝聚态物理。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gate-tunable Veselago interference in a bipolar graphene microcavity
双极石墨烯微腔中的门可调谐韦塞拉戈干涉
  • DOI:
    10.1038/s41467-022-34347-w
  • 发表时间:
    2022-11-07
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Zhang, Xi;Ren, Wei;Bell, Elliot;Zhu, Ziyan;Tsai, Kan-Ting;Luo, Yujie;Watanabe, Kenji;Taniguchi, Takashi;Kaxiras, Efthimios;Luskin, Mitchell;Wang, Ke
  • 通讯作者:
    Wang, Ke
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ke Wang其他文献

Estimation and Propagation: Scene Flow Prediction on Occluded Point Clouds
估计和传播:遮挡点云上的场景流预测
Simulation of non-Newtonian oil-water core annular flow through return bends
通过回弯管的非牛顿油水岩心环流模拟
  • DOI:
    10.1007/s00231-017-2093-5
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    F. Jiang;Ke Wang;M. Skote;T. Wong;F. Duan
  • 通讯作者:
    F. Duan
On a stochastic predator‐prey system with modified functional response
具有修改功能响应的随机捕食者-被捕食系统
Conjoint Analysis and Discrete Choice Experiments for Quality Improvement
用于质量改进的联合分析和离散选择实验
  • DOI:
    10.1080/00224065.2013.11917916
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    William Li;C. Nachtsheim;Ke Wang;R. Reul;Mark C. Albrecht
  • 通讯作者:
    Mark C. Albrecht
Applicability of wetting front advancing method in the sand to silty clay soils
砂中湿锋推进法对粉质粘土的适用性
  • DOI:
    10.1016/j.sandf.2020.07.002
  • 发表时间:
    2020-08-24
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Qiang Liu;Ping Xi;Jiali Miao;Li Xiaochen;Ke Wang
  • 通讯作者:
    Ke Wang

Ke Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ke Wang', 18)}}的其他基金

Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
  • 批准号:
    2321225
  • 财政年份:
    2023
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Standard Grant
CRII: SHF: A Flexible, Learning-Enabled, and Multi-layer Interconnection Architecture for Optimized On-Chip Communications
CRII:SHF:一种灵活的、支持学习的多层互连架构,用于优化片上通信
  • 批准号:
    2245950
  • 财政年份:
    2023
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Standard Grant

相似国自然基金

微波光子通过介观量子电路-Majorana 费米子耦合系统的动态热输运与噪声理论
  • 批准号:
    11975045
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
用纠缠态表象发展介观电路量子理论
  • 批准号:
    11775208
  • 批准年份:
    2017
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
介观体系非平衡交流输运中的量子纠缠熵
  • 批准号:
    11674024
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
介观电容器高频量子输运行为的理论研究
  • 批准号:
    11504248
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于拓扑超导体Sr2RuO4的介观超导器件的制备与性质研究
  • 批准号:
    11574266
  • 批准年份:
    2015
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目

相似海外基金

Theoretical study on control and observation of quantum states by many-body effects using mesoscopic complexes
利用介观配合物进行多体效应控制和观察量子态的理论研究
  • 批准号:
    21K03415
  • 财政年份:
    2021
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical study on control and observation of quantum states by many-body effects using mesoscopic complexes
利用介观配合物进行多体效应控制和观察量子态的理论研究
  • 批准号:
    21K03415
  • 财政年份:
    2021
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Noise in mesoscopic quantum systems
介观量子系统中的噪声
  • 批准号:
    RGPIN-2016-04163
  • 财政年份:
    2021
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Discovery Grants Program - Individual
Noise in mesoscopic quantum systems
介观量子系统中的噪声
  • 批准号:
    RGPIN-2016-04163
  • 财政年份:
    2021
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Discovery Grants Program - Individual
Noise in mesoscopic quantum systems
介观量子系统中的噪声
  • 批准号:
    RGPIN-2016-04163
  • 财政年份:
    2020
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了