CRII: SHF: A Flexible, Learning-Enabled, and Multi-layer Interconnection Architecture for Optimized On-Chip Communications

CRII:SHF:一种灵活的、支持学习的多层互连架构,用于优化片上通信

基本信息

  • 批准号:
    2245950
  • 负责人:
  • 金额:
    $ 17.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

The rapid scaling of technology has led to the growth of parallel systems that integrate an increased number of cores per chip. For contemporary computer systems, this trend has signified a paradigm shift from computation-centric to communication-centric design methodologies. Consequently, enhancing security, reliability, performance, and energy efficiency of Network-on-Chips (NoCs) architectures is proving to be one of the most critical design challenges to realizing the performance potential of future parallel systems. Despite existing NoC research having made significant progress addressing individual design objectives, relatively few efforts to date have targeted all four challenges in a holistic manner due to the existence of design trade-offs and the complexity of dynamic interactions among various NoC hardware. For example, deploying per-router error correction circuit can lead to excessive delays and increased power consumption while recovering from the fault. Additionally, utilizing regional routing methods for security purposes may result in network hotspots and congestion that greatly hinder performance and lead to faults. Therefore, there is an imminent need for an optimized NoC design that manages the dynamic interactions and handles design trade-offs.This project devotes to developing a holistic design methodology that addresses the security and reliability of the entire NoC, while maximizing performance and energy efficiency. To achieve this, the project first carries out a thorough study of NoC fault mechanisms and security vulnerabilities. A variety of security-enhancing and fault-tolerant techniques are developed and investigated in order to assess their performance and overheads. Second, it develops a comprehensive and flexible NoC design framework that integrates multiple reconfigurable hardware with embedded NoC enhancement techniques to protect the NoC from transient and permanent faults and security vulnerabilities while meeting power and performance requirements. The designed framework incorporates a learning-enabled controller that deploys machine learning algorithms, such as supervised learning and reinforcement learning, to accurately capture the runtime behaviors of NoCs, model dynamic interactions, and handle trade-offs by automatically deploying the most suitable configurations of the dynamic hardware with the goal of maximizing system-level security, reliability, power, and performance. Finally, the project develops a cycle-accurate simulation tool and an FPGA prototype to evaluate the designed NoC framework. The holistic design approach, covering the NoC architecture designs and the machine learning techniques, will benefit future multicore architectures with improvements in security, dependability, energy efficiency, and performance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术的快速扩展导致并行系统的发展,每个芯片集成的内核数量不断增加。对于当代计算机系统来说,这种趋势标志着从以计算为中心的设计方法到以通信为中心的设计方法的范式转变。因此,增强片上网络 (NoC) 架构的安全性、可靠性、性能和能源效率被证明是实现未来并行系统性能潜力的最关键的设计挑战之一。尽管现有的片上网络研究在解决个别设计目标方面取得了重大进展,但由于设计权衡的存在以及各种片上网络硬件之间动态交互的复杂性,迄今为止,以整体方式应对所有四个挑战的努力相对较少。例如,部署每个路由器的纠错电路可能会导致从故障中恢复时出现过度延迟并增加功耗。此外,出于安全目的而使用区域路由方法可能会导致网络热点和拥塞,从而极大地影响性能并导致故障。因此,迫切需要一种优化的片上网络设计来管理动态交互并处理设计权衡。该项目致力于开发一种整体设计方法,解决整个片上网络的安全性和可靠性,同时最大限度地提高性能和能效。为了实现这一目标,该项目首先对NoC故障机制和安全漏洞进行了深入研究。人们开发并研究了各种增强安全性和容错的技术,以评估其性能和开销。其次,它开发了全面且灵活的NoC设计框架,将多个可重构硬件与嵌入式NoC增强技术集成在一起,以保护NoC免受暂时性和永久性故障以及安全漏洞的影响,同时满足功耗和性能要求。设计的框架包含一个支持学习的控制器,该控制器部署监督学习和强化学习等机器学习算法,以准确捕获片上网络的运行时行为、建模动态交互,并通过自动部署最合适的网络配置来处理权衡。动态硬件,目标是最大限度地提高系统级安全性、可靠性、功率和性能。最后,该项目开发了一个周期精确的仿真工具和一个 FPGA 原型来评估设计的 NoC 框架。涵盖NoC架构设计和机器学习技术的整体设计方法将有利于未来的多核架构,提高安全性、可靠性、能源效率和性能。该奖项反映了NSF的法定使命,并通过评估被认为值得支持基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FDMAX: An Elastic Accelerator Architecture for Solving Partial Differential Equations
FDMAX:用于求解偏微分方程的弹性加速器架构
Morph-GCNX: A Universal Architecture for High-Performance and Energy-Efficient Graph Convolutional Network Acceleration
Morph-GCNX:高性能、高能效图卷积网络加速的通用架构
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ke Wang其他文献

Polarization of Λ(1405) in the γp → K+πΣ reaction
γp–––K ÏΣ 反应中 Î(1405) 的极化
  • DOI:
    10.1016/j.physletb.2020.136019
  • 发表时间:
    2020-12-16
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Ke Wang;Bochao Liu
  • 通讯作者:
    Bochao Liu
Basic face animation mode extraction by ICA
通过 ICA 提取基本人脸动画模式
Catalyst-Free C(sp2)-H Borylation through Aryl Radical Generation from Thiophenium Salts via Electron Donor-Acceptor Complex Formation.
通过电子供体-受体复合物的形成,从噻吩鎓盐产生芳基自由基,进行无催化剂的 C(sp2)-H 硼化。
  • DOI:
    10.1021/acs.orglett.2c03008
  • 发表时间:
    2022-10-03
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Bo Li;Ke Wang;Huifeng Yue;Alwin Drichel;Jingjing Lin;Zhenying Su;M. Rueping
  • 通讯作者:
    M. Rueping
A novel LAG3 neutralizing antibody improves cancer immunotherapy by dual inhibition of MHC-II and FGL1 ligand binding.
一种新型 LAG3 中和抗体通过双重抑制 MHC-II 和 FGL1 配体结合来改善癌症免疫治疗。
Data-based decentralized learning scheme for nonlinear systems with mismatched interconnections
互连失配非线性系统的基于数据的分散学习方案
  • DOI:
    10.1016/j.neucom.2021.11.002
  • 发表时间:
    2021-11-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    C. Mu;Jian;Haoming Luo;Ke Wang
  • 通讯作者:
    Ke Wang

Ke Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ke Wang', 18)}}的其他基金

Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
  • 批准号:
    2321225
  • 财政年份:
    2023
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Standard Grant
CAREER: Mesoscopic Quantum Opto-Electronics in Gate-Defined Transition Metal Dichacogenide Nanostructures
职业:栅极定义的过渡金属二硫族化物纳米结构中的介观量子光电子学
  • 批准号:
    1944498
  • 财政年份:
    2020
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
  • 批准号:
    42274025
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

SHF: Small: A Design Automation Methodology for Flexible Real-Time Computing based on Split and Early Exit Neural Models
SHF:小型:基于分裂和早期退出神经模型的灵活实时计算的设计自动化方法
  • 批准号:
    2140154
  • 财政年份:
    2022
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: GOALI: Multiscale CAD Framework of Atomically Thin Transistors for Flexible Electronic System Applications
SHF:小型:协作研究:GOALI:用于灵活电子系统应用的原子薄晶体管的多尺度 CAD 框架
  • 批准号:
    1618038
  • 财政年份:
    2016
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: GOALI: Multiscale CAD Framework of Atomically Thin Transistors for Flexible Electronic System Applications
SHF:小型:协作研究:GOALI:用于灵活电子系统应用的原子薄晶体管的多尺度 CAD 框架
  • 批准号:
    1618762
  • 财政年份:
    2016
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Standard Grant
CRII: SHF: A Compiler and Runtime Infrastructure for Flexible Scheduling and Scheduling-Enabled Optimizations on GPUs
CRII:SHF:用于 GPU 上灵活调度和启用调度优化的编译器和运行时基础架构
  • 批准号:
    1464216
  • 财政年份:
    2015
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Standard Grant
SHF: Medium: Back to the Future with Printed, Flexible Electronics Design in a Post-CMOS Era when Transistor Counts Matter Again
SHF:中:晶体管再次发挥重要作用的后 CMOS 时代,通过印刷、柔性电子设计回到未来
  • 批准号:
    1408123
  • 财政年份:
    2014
  • 资助金额:
    $ 17.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了