MLWiNS: Decentralized Heterogeneous Deep Learning for Efficient Wireless Spectrum Monitoring

MLWiNS:用于高效无线频谱监控的去中心化异构深度学习

基本信息

  • 批准号:
    2003211
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

As wireless networks evolve to be increasingly massive and complex, traditional spectrum monitoring methods with model-based signal processing techniques have become inadequate and may even fail to provide accurate wireless network evaluation. Meanwhile, deep learning techniques have been proven successful in standard centralized learning tasks (e.g., image classification), yet it is barely explored for large-scale wireless sensing systems, which entail unconventional node distribution, complex channel fading and user collaboration opportunities. This project develops innovative decentralized heterogeneous deep learning techniques for large-scale wireless systems. The outcomes of this project lead to technical innovations that tackle several major challenges of the state-of-the-art wireless sensing and management systems, including the incapability of conventional sensing and management schemes in ultra-wide wireless spectrum settings, the difficulty in handling heterogeneous tasks and non-IID data with deep learning technologies, as well as the costly overhead of communication and computation in distributed deep learning for large-scale networks.This project addresses the unique challenges of large-scale wireless spectrum sensing by developing a revolutionary decentralized deep learning framework. Three main thrusts are planned. In Thrust 1, major challenges of complex and large-scale wireless spectrum sensing nowadays are investigated, and an innovative deep learning-based solution is developed for practical spectrum sensing tasks. In Thrust 2, dedicated communication and computation schemes are developed to optimize the performance of the proposed decentralized deep learning framework. In Thrust 3, the very first exploratory effort is made to understand and utilize the intricate role of machine learning in spectrum management, based on the key observation that it consumes wireless network resources to bring in added value to network resource utilization. Experimental testing is demonstrated for practical spectrum monitoring applications. The proposed wireless sensing and management system can benefit a plethora of large-scale wireless network systems, such as a 5G wireless network and other large-scale mesh networking systems. The education plan enhances existing curricula and pedagogy by integrating interdisciplinary modules on embedded systems, mobile computing, and machine learning with newly developed teaching practices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着无线网络的发展变得越来越大,传统的频谱监视方法具有基于模型的信号处理技术的发展,甚至可能无法提供准确的无线网络评估。同时,深度学习技术在标准的集中学习任务(例如图像分类)中被证明是成功的,但是对于大规模的无线传感系统而言,它几乎没有探索,这需要非常规节点分布,复杂的频道褪色和用户协作机会。该项目开发了针对大型无线系统的创新分散的异质深度学习技术。该项目的结果导致了技术创新,从而应对最先进的无线感应和管理系统的几个主要挑战,包括在超宽无线频谱环境中传统感应和管理方案无能为力,难以处理异质任务以及与深度学习的互联网络,以及对成本进行的跨越跨度的通信和计算通过开发一个革命性的分散深度学习框架来解决大型无线频谱传感的独特挑战。计划三个主要推力。 在推力1中,如今研究了复杂和大规模无线频谱感知的主要挑战,并为实用的频谱传感任务开发了创新的基于深度学习的解决方案。在推力2中,开发了专门的沟通和计算方案,以优化提议的分散深度学习框架的性能。在Thrust 3中,基于关键观察结果,即它消耗了无线网络资源来为网络资源的利用带来附加值,这是为了理解和利用机器学习在频谱管理中的复杂作用而做出的第一个探索性工作。实验测试已用于实践频谱监测应用。提出的无线传感和管理系统可以使大量的大型无线网络系统(例如5G无线网络和其他大型网状网络系统)受益。该教育计划通过将嵌入式系统,移动计算和机器学习的跨学科模块与新开发的教学实践相结合,从而增强了现有的课程和教学法。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来支持的。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Distributed Swarm Learning for Edge Computing
Fed2: Feature-Aligned Federated Learning
CB-DSL: Communication-Efficient and Byzantine-Robust Distributed Swarm Learning on Non-i.i.d. Data
BEV-SGD: Best Effort Voting SGD against Byzantine Attacks for Analog Aggregation based Federated Learning Over the Air
BEV-SGD:针对基于模拟聚合的空中联邦学习的拜占庭攻击的尽力投票 SGD
  • DOI:
    10.1109/jiot.2022.3164339
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Xin Fan;Yue Wang;Yan Huo;Zhi Tian
  • 通讯作者:
    Zhi Tian
DQC-ADMM: Decentralized Dynamic ADMM With Quantized and Censored Communications
DQC-ADMM:具有量化和审查通信的去中心化动态 ADMM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiang Chen其他文献

Theoretical and experimental study of mm-wave RoF/wireless system based on OFM technique with OFDM modulation
基于OFM技术的毫米波RoF/无线系统的理论与实验研究
Novel mutations in GJB2 encoding connexin‐26 in Japanese patients with keratitis–ichthyosis–deafness syndrome
日本角膜炎-鱼鳞病-耳聋综合征患者编码连接蛋白-26 的 GJB2 的新突变
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    10.3
  • 作者:
    S. Yotsumoto;T. Hashiguchi;Xiang Chen;Xiang Chen;N. Ohtake;A. Tomitaka;H. Akamatsu;K. Matsunaga;S. Shiraishi;H. Miura;J. Adachi;T. Kanzaki
  • 通讯作者:
    T. Kanzaki
A copper(II) complex of an asymmetrically N-functionalized derivative of 1,4,7-triazacyclononane: synthesis, crystal structure and SOD activity
1,4,7-三氮杂环壬烷不对称N-功能化衍生物的铜(II)配合物:合成、晶体结构和SOD活性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qing;Xiang Chen;Wen Wang;Xiang
  • 通讯作者:
    Xiang
CASIMIR TORQUE ON TWO ROTATING PLATES
两个旋转板上的卡西米尔扭矩
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiang Chen
  • 通讯作者:
    Xiang Chen
Knockdown of enhancer of rudimentary homolog expression attenuates proliferation, cell cycle and apoptosis of melanoma cells
基本同系物表达增强子的敲低可减弱黑色素瘤细胞的增殖、细胞周期和凋亡
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Muzhang Xiao;Ningning Tang;Yu Yan;Zhelin Li;Shu;Siqi He;Zizi Chen;K. Cao;Jia Chen;Jianda Zhou;Xiang Chen
  • 通讯作者:
    Xiang Chen

Xiang Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiang Chen', 18)}}的其他基金

CAREER: "Adapt, Learn, Collaborate" — Closing the Pervasive Edge AI Loop with Liquid Intelligence
职业生涯:“适应、学习、协作”——利用液态智能关闭普遍的边缘人工智能循环
  • 批准号:
    2146421
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Expanding the Interaction Bandwidth between Physicians and AI
职业:扩大医生与人工智能之间的互动带宽
  • 批准号:
    2047297
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CRII: CHS: Techniques for Helping Domain Experts Understand and Improve Models Underlying Intelligent Systems
CRII:CHS:帮助领域专家理解和改进智能系统底层模型的技术
  • 批准号:
    1850183
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Acquisition, Collection and Computation of Dynamic Big Sensory Data in Smart Cities
BIGDATA:F:协作研究:智慧城市动态大传感数据的采集、收集和计算
  • 批准号:
    1741338
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: EUReCa: Enabling Untethered VR/AR System via Human-centric Graphic Computing and Distributed Data Processing
CSR:小型:协作研究:EUReCa:通过以人为中心的图形计算和分布式数据处理实现不受束缚的 VR/AR 系统
  • 批准号:
    1717775
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative: Privacy Attacks and Defense Mechanisms in Online Social Networks
SaTC:核心:媒介:协作:在线社交网络中的隐私攻击和防御机制
  • 批准号:
    1704274
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EARS: Collaborative Research: Spectrum Sensing for Coexistence of Active and Passive Radio Services
EARS:协作研究:主动和被动无线电服务共存的频谱感知
  • 批准号:
    1547329
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CIF: Small: Task-Cognizant Sparse Sensing for Inference
CIF:小型:用于推理的任务认知稀疏感知
  • 批准号:
    1527396
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

能级调控和原子级分散金属负载对提升In2S3基异质结光催化产H2O2的机理研究
  • 批准号:
    22272034
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
能级调控和原子级分散金属负载对提升In2S3基异质结光催化产H2O2的机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于投资者异质性的PPP项目风险分散机理及策略研究
  • 批准号:
    71901068
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
单分散氧化锌纳米颗粒薄膜/硅异质结的制备及其紫外光电性能
  • 批准号:
    11604390
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
渐进开放市场中资产所有权的异质跨境整合效应及风险分散策略
  • 批准号:
    71573077
  • 批准年份:
    2015
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: CNS: Secure Decentralized AI in Heterogeneous IoT Networks: Foundation and Application
CRII:CNS:异构物联网网络中的安全去中心化人工智能:基础与应用
  • 批准号:
    2245933
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Study of distributed evolutionary computation for interrelated multi-objective optimization problems
相互关联的多目标优化问题的分布式进化计算研究
  • 批准号:
    22K12185
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of computational methods to investigate the clustering dynamics of membrane proteins in heterogeneous biological membranes
开发计算方法来研究异质生物膜中膜蛋白的聚类动力学
  • 批准号:
    20K14432
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A parallel computing framework for multi-scale evacuation simulations using particle-based models on heterogeneous computing platforms
在异构计算平台上使用基于粒子的模型进行多尺度疏散模拟的并行计算框架
  • 批准号:
    19K21528
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
SHF : Medium : Collaborative Research: Decentralized On-Chip Infrastructure for Robustness and Portability in Heterogeneous Multicores
SHF:媒介:协作研究:异构多核中的分散片上基础设施的稳健性和可移植性
  • 批准号:
    1764000
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了