MRI: Acquisition of Autonomous Plug-In Hybrid Vehicle Platform for Multidisciplinary Research and Education at the University of Michigan-Dearborn
MRI:收购密歇根大学迪尔伯恩分校用于多学科研究和教育的自主插电式混合动力汽车平台
基本信息
- 批准号:2214830
- 负责人:
- 金额:$ 24.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF MRI project aims to acquire a high-performance autonomous electric vehicle platform with a sensor suite for research and education to advance fundamental science and engineering research and education. The intellectual merits of the project include the following. The platform will accelerate the development of critical algorithms in machine learning and analysis methods tailored to the safety and stability of autonomous vehicles while enabling transformative research on cybersecurity by providing real-world scenarios. Research on energy systems for advanced mobility will also be able to be extended and further explored. The broader impacts of the project entail the following. The platform will support undergraduate and graduate students, as well as post-doctoral fellows by offering research training opportunities through experiential learning with a programmable electric vehicle. The University of Michigan-Dearborn (UM-D) is located in the Metro-Detroit area, the home to the “Big Three” (GM, Ford, and Chrysler), and automotive suppliers. The U.S. automotive and advanced mobility industries need more skilled and knowledgeable scientists and engineers who are ready for new technologies such as intelligent systems powered by artificial intelligence and machine learning, energy and power systems, cybersecurity, and human-vehicle interfaces. The project will help in contributing to the high demand for skilled workers from the advanced mobility industry with the acquired instrument. The platform will be crucial research instrumentation to significantly enhance interdisciplinary research and education at UM-D in several research activities, including embodied cognitive vehicle, in-vehicular network security, energy consumption, environmental perception, cybersecurity, and driver behavior analyses in electric and advanced mobilities. The instrument will also substantially improve undergraduate and graduate research training in the electrical, computer, robotics, mechanical, and industrial engineering departments at UM-D. Active research is going on in the fields of automotive, robotics, cybersecurity, energy systems, and human-vehicle interface at UM-D. The proposed platform will enable collaborative research in a realistic environment with a full-scale programmable vehicle in the aforementioned emerging research areas. The project team will work on ten transformative research topics to be enabled by the platform that will substantially improve the current research and experimentation capabilities at UM-D.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 NSF MRI 项目旨在获得一个带有用于研究和教育的传感器套件的高性能自动驾驶电动汽车平台,以推进基础科学和工程研究和教育。该平台将加速以下领域的发展。针对自动驾驶汽车的安全性和稳定性而定制的机器学习和分析方法中的关键算法,同时通过提供现实世界场景来实现网络安全的变革性研究,也将能够扩展和进一步探索其影响。该项目包括以下内容:密歇根大学迪尔伯恩分校 (UM-D) 位于底特律大都会地区,是“汽车之家”的所在地,通过使用可编程电动汽车进行体验式学习,为研究生和博士后研究员提供研究培训机会。 “三巨头”(通用汽车、福特和克莱斯勒)以及汽车供应商需要更多技术精湛、知识渊博的科学家和工程师,他们为人工智能和机器学习驱动的智能系统、能源等新技术做好了准备。和电源该项目将有助于满足先进移动行业对技术工人的高需求,该平台将成为显着加强密西根大学跨学科研究和教育的重要研究工具。该仪器还将显着改善电气和先进移动领域的本科生和研究生研究培训,包括体现认知车辆、车载网络安全、能源消耗、环境感知、网络安全以及驾驶员行为分析。计算机、机器人、机械和工业UM-D 的工程部门正在汽车、机器人、网络安全、能源系统和人车界面领域进行积极的研究。拟议的平台将能够在现实环境中进行全面的协作研究。该项目团队将致力于该平台所支持的十个变革性研究课题,这将大大提高 UM-D 当前的研究和实验能力。该奖项反映了 NSF 的法定使命,并被视为值得支持通过使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
OPEMI: Online Performance Evaluation Metrics Index for Deep Learning-Based Autonomous Vehicles
OPEMI:基于深度学习的自动驾驶汽车在线性能评估指标
- DOI:10.1109/access.2023.3246104
- 发表时间:2023-01
- 期刊:
- 影响因子:3.9
- 作者:Kim, Donghyun;Khalil, Aws;Nam, Haewoon;Kwon, Jaerock
- 通讯作者:Kwon, Jaerock
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaerock Kwon其他文献
TIME, CONSCIOUSNESS, AND MIND UPLOADING
时间、意识和思想上传
- DOI:
10.1142/s179384301240015x - 发表时间:
2012-06-14 - 期刊:
- 影响因子:0
- 作者:
Yoonsuck Choe;Jaerock Kwon;Ji Ryang Chung - 通讯作者:
Ji Ryang Chung
Vision based localization for multiple mobile robots using low-cost vision sensor
使用低成本视觉传感器对多个移动机器人进行基于视觉的定位
- DOI:
10.4018/ijhcr.2016010102 - 发表时间:
2015-05-21 - 期刊:
- 影响因子:0
- 作者:
S. Lee;G. Tewolde;Jongil Lim;Jaerock Kwon - 通讯作者:
Jaerock Kwon
Reduced resolution lane detection algorithm
降低分辨率车道检测算法
- DOI:
10.1109/afrcon.2017.8095697 - 发表时间:
2017-09-01 - 期刊:
- 影响因子:0
- 作者:
Li Dang;G. Tewolde;Xiaoyuan Zhang;Jaerock Kwon - 通讯作者:
Jaerock Kwon
Tracing Tubular Structures from Teravoxel-Sized Microscope Images
从 Teravoxel 大小的显微镜图像中追踪管状结构
- DOI:
10.1109/embc.2018.8512288 - 发表时间:
2018-07-01 - 期刊:
- 影响因子:0
- 作者:
S. Raghavan;Jaerock Kwon - 通讯作者:
Jaerock Kwon
ANEC: Adaptive Neural Ensemble Controller for Mitigating Latency Problems in Vision-Based Autonomous Driving
ANEC:自适应神经集成控制器,用于缓解基于视觉的自动驾驶中的延迟问题
- DOI:
10.1109/iros55552.2023.10342520 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:0
- 作者:
Aws Khalil;Jaerock Kwon - 通讯作者:
Jaerock Kwon
Jaerock Kwon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jaerock Kwon', 18)}}的其他基金
MRI: Development of High-Throughput ad High-Resolution Three-Dimensional Tissue Scanner with Internet-Connected 3D Virtual Microscope for Large-Scale Automated Histology
MRI:开发高通量和高分辨率三维组织扫描仪以及联网的 3D 虚拟显微镜,用于大规模自动化组织学
- 批准号:
1337983 - 财政年份:2013
- 资助金额:
$ 24.46万 - 项目类别:
Standard Grant
相似国自然基金
高磁感取向硅钢表面氧化层内传质与获得抑制剂演变机理研究
- 批准号:52374316
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
- 批准号:82300777
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SIRT3-SOD2-mtROS信号轴调控骨骼肌自噬在脓毒症相关获得性肌无力中的作用及机制研究
- 批准号:82360382
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
KRAS(G12D)抑制剂在胰腺癌中获得性耐药的机制研究
- 批准号:82373331
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Improved MRI guidance of pediatric catheterization via autonomous multi-beat data synthesis
通过自主多节拍数据合成改进儿科导管插入术的 MRI 指导
- 批准号:
10646226 - 财政年份:2022
- 资助金额:
$ 24.46万 - 项目类别:
Improved MRI guidance of pediatric catheterization via autonomous multi-beat data synthesis
通过自主多节拍数据合成改进儿科导管插入术的 MRI 指导
- 批准号:
10412491 - 财政年份:2022
- 资助金额:
$ 24.46万 - 项目类别:
MRI: Acquisition of Connected Autonomous Vehicles (CAV) Infrastructure to Support Cooperative Human-Robot Driving and Pedestrian Safety
MRI:收购联网自动驾驶车辆 (CAV) 基础设施以支持人机协作驾驶和行人安全
- 批准号:
2216489 - 财政年份:2022
- 资助金额:
$ 24.46万 - 项目类别:
Standard Grant
MRI: Acquisition of a Testbed of Connected Autonomous MicroTransit Vehicles
MRI:获取联网自主微型交通车辆的测试台
- 批准号:
2018879 - 财政年份:2020
- 资助金额:
$ 24.46万 - 项目类别:
Standard Grant
MRI: CNS: Acquisition of Real-Time Hardware-in-the-Loop Simulation for Verification of Connected and Autonomous Vehicles
MRI:CNS:获取实时硬件在环仿真以验证联网和自动驾驶车辆
- 批准号:
1919855 - 财政年份:2019
- 资助金额:
$ 24.46万 - 项目类别:
Standard Grant