Derived Categories, Noncommutative Orders, and Other Topics

派生范畴、非交换顺序和其他主题

基本信息

  • 批准号:
    2001224
  • 负责人:
  • 金额:
    $ 23.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The proposed research is in the field of algebraic geometry with some connections to string theory. Algebraic geometry is a branch of mathematics studying geometric objects defined by polynomial equations and related mathematical structures. Classically one associates with such geometric objects (called algebraic varieties) the set of algebraic functions on them which forms a commutative ring (i.e., functions can be added and multiplied). Modern research involves more sophisticated algebraic structures associated with algebraic varieties, such as the category of coherent sheaves (the notion of a category is a generalization of that of an associative ring). One part of the project is to establish some cases of the homological mirror symmetry conjecture which identifies categories appearing in geometry in two seemingly unrelated contexts. Another part of the project aims to give a rigorous mathematical foundation to some aspects of the use of super Riemann surfaces (a generalization of the usual surfaces) in string theory. This project provides research training opportunities for undergraduate and graduate students.More specifically, the first part of the project is on homological mirror symmetry for symmetric powers of punctured spheres. The goal is to identify categorical resolutions of derived categories of coherent sheaves on certain algebraic varieties with partially wrapped Fukaya categories of the symmetric powers of punctured spheres. This may help to find a new construction of Ozsvath-Szabo's categorical knot invariant. The second part is to work out a generalization of the Hirzebruch-Riemann-Roch formula to the categories of matrix factorizations over non-affine varieties and stacks. The PI also would like to use categories of matrix factorizations to find a Landau-Ginzburg counterpart of the G-equivariant Gromov-Witten theory. The third part of the project is to realize trigonometric solutions of the associative Yang-Baxter equation in terms of noncommutative orders over nodal cubics. The fourth part is related to the geometry of stable supercurves. The PI proposes to understand the poles of the analog of Mumford's isomorphism for the Berezinian of the moduli of supercurves near the boundary of the compactification by stable supercurves and to study some problems arising in integration over the moduli space of supercurves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拟议的研究是在代数几何学领域,与字符串理论有一些联系。代数几何形状是研究由多项式方程和相关数学结构定义的数学对象的数学分支。从经典上讲,一个几何对象(称为代数品种)在它们上形成换向环(即可以添加并乘以乘以函数)的代数函数集合。现代研究涉及与代数品种相关的更复杂的代数结构,例如相干滑轮类别(类别的概念是关联环的概括)。该项目的一部分是建立某些同源镜对称性猜想的案例,该猜想确定了在两个看似无关的上下文中几何出现的类别。该项目的另一部分旨在为字符串理论中超级黎曼表面(通常表面的概括)的某些方面赋予严格的数学基础。该项目为本科和研究生提供了研究培训机会。更具体地说,该项目的第一部分是在刺穿球体的对称能力的同源镜子对称性上。目的是确定在某些代数品种上具有部分包裹的福卡亚类别的对称球体的对称能力的衍生类别类别的分类分辨率。这可能有助于找到Ozsvath-Szabo的分类结的新结构。第二部分是确定将Hirzebruch-Riemann-Roch公式概括为非植入品种和堆栈的矩阵因素化类别的类别。 PI还希望使用矩阵因法化类别来找到G-均等式Gromov-Witten理论的Landau-Ginzburg对应物。该项目的第三部分是实现阳性立方体的非交通订单方面的联想杨巴克斯特方程的三角解决方案。第四部分与稳定超级弯曲的几何形状有关。 The PI proposes to understand the poles of the analog of Mumford's isomorphism for the Berezinian of the moduli of supercurves near the boundary of the compactification by stable supercurves and to study some problems arising in integration over the moduli space of supercurves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review 标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometrization of Trigonometric Solutions of the Associative and Classical Yang–Baxter Equations
Notes on fundamental algebraic supergeometry. Hilbert and Picard superschemes
  • DOI:
    10.1016/j.aim.2023.108890
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    U. Bruzzo;D. H. Ruipérez;A. Polishchuk
  • 通讯作者:
    U. Bruzzo;D. H. Ruipérez;A. Polishchuk
Homological mirror symmetry for the symmetric squares of punctured spheres
穿孔球对称正方形的同调镜像对称性
  • DOI:
    10.1016/j.aim.2023.108942
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Lekili, Yankı;Polishchuk, Alexander
  • 通讯作者:
    Polishchuk, Alexander
A Landau–Ginzburg mirror theorem via matrix factorizations
Elliptic zastava
  • DOI:
    10.1090/jag/803
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    M. Finkelberg;M. Matviichuk;A. Polishchuk
  • 通讯作者:
    M. Finkelberg;M. Matviichuk;A. Polishchuk
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Polishchuk其他文献

De Rham cohomology for supervarieties
超簇的 De Rham 上同调
  • DOI:
    10.1007/s40879-024-00736-2
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk
$${\mathbb A}^{0|1}$$ A 0 | 1
$${mathbb A}^{0|1}$$ A 0 |
Schwartz $\kappa$-densities for the moduli stack of rank $2$ bundles on a curve over a local field
局部场曲线上的阶 $2$ 束的模堆栈的 Schwartz $kappa$-密度
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Braverman;D. Kazhdan;Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk

Alexander Polishchuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Polishchuk', 18)}}的其他基金

Analytic Langlands Correspondence
分析朗兰兹通讯
  • 批准号:
    2349388
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Moduli of A-Infinity Structures and Related Topics
A-无穷大结构的模及相关主题
  • 批准号:
    1700642
  • 财政年份:
    2017
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
A-infinity structures and derived categories in algebraic geometry
代数几何中的 A-无穷大结构和派生范畴
  • 批准号:
    1400390
  • 财政年份:
    2014
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Derived categories techniques in algebraic geometry
代数几何中的派生范畴技术
  • 批准号:
    1001364
  • 财政年份:
    2010
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Complex geometry of noncommutative tori and t-structures on derived categories
派生范畴上非交换环面和 t 结构的复杂几何
  • 批准号:
    0601034
  • 财政年份:
    2006
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Topics in Algebraic Geometry, Non-commutative Geometry and Representation Theory
代数几何、非交换几何和表示论专题
  • 批准号:
    0527042
  • 财政年份:
    2004
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Topics in Algebraic Geometry, Non-commutative Geometry and Representation Theory
代数几何、非交换几何和表示论专题
  • 批准号:
    0302215
  • 财政年份:
    2003
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Homological Mirror Symmetry and Functional Equations
同调镜像对称和函数方程
  • 批准号:
    0070967
  • 财政年份:
    2000
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Sheaves on Witt Schemes and Trace Formula with Application to Representation Theory
数学科学:维特方案和迹公式及其在表示论中的应用
  • 批准号:
    9700458
  • 财政年份:
    1997
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant

相似国自然基金

天疱疮慢性皮损异位淋巴结构支持类别转换后的致病性抗体分泌引起治疗抵抗
  • 批准号:
    82304001
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
缜密感知导向的类别监督协同显著物体检测算法研究
  • 批准号:
    62301451
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于全局学习的高光谱影像多类别变化检测方法研究
  • 批准号:
    62301054
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MTMR3调控生发中心B细胞反应及IgA抗体类别转换参与IgA肾病的机制和干预研究
  • 批准号:
    82370709
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多中心类别不平衡半监督医学影像分割及其在预后应用的方法研究
  • 批准号:
    62306254
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Perverse sheaves and schobers
反常的滑轮和 schobers
  • 批准号:
    20H01794
  • 财政年份:
    2020
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dualities and Correspondences in Algebraic Geometry via Derived Categories and Noncommutative Methods
通过派生范畴和非交换方法的代数几何中的对偶性和对应性
  • 批准号:
    EP/N021649/2
  • 财政年份:
    2017
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Fellowship
Perverse sheaves of categories, and derived symmetries of 3-folds
范畴的反常滑轮和 3 重的派生对称性
  • 批准号:
    16K17561
  • 财政年份:
    2016
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Dualities and Correspondences in Algebraic Geometry via Derived Categories and Noncommutative Methods
通过派生范畴和非交换方法的代数几何中的对偶性和对应性
  • 批准号:
    EP/N021649/1
  • 财政年份:
    2016
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Fellowship
Complex geometry of noncommutative tori and t-structures on derived categories
派生范畴上非交换环面和 t 结构的复杂几何
  • 批准号:
    0601034
  • 财政年份:
    2006
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了