Complex geometry of noncommutative tori and t-structures on derived categories

派生范畴上非交换环面和 t 结构的复杂几何

基本信息

  • 批准号:
    0601034
  • 负责人:
  • 金额:
    $ 12.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

The proposed research will focus mainly on two topics:1) holomorphic bundles on noncommutative tori, and 2) t-structures and stability conditions on derived categories.Noncommutative tori play an important role in noncommutative geometry being the simplest examples of noncommutative manifolds. However, putting the complex structure and considering corresponding holomorphic objects on them is a recently new idea. The first project is devoted to the study of the categories of holomorphic bundles on noncommutative tori generalizingknown results in the two-dimensional case. The second project is concerned withinteresting new structures on derived categories of coherent sheaves on algebraic varietiesdiscovered by Bridgeland (motivated by some ideas from physics). Namely, the goalis to attack a number of problems related to stability conditions on such derived categories.Two more projects in the proposal are concerned with the study of tautological cycles on Jacobian varieties and with A-infinity algebras arising in algebraic geometry.The proposed research is in the fields of noncommutative geometry and algebraic geometry.Noncommutative geometry is a relatively new field originally developed by Connes that combines ideas from noncommutative algebra, differential geometry and functional analysis. Algebraic geometry is a classical branch of mathematics studying geometric objects defined by polynomial equations and related mathematical concepts. Many recent advances in both fieldswere motivated by their use in physics.
拟议的研究将主要集中在两个主题上:1)对非交易性托里的全态束,以及2)T结构和稳定条件对派生类别的稳定性。非共同的Tori在非交互性几何学中起重要作用,是非交换歧管的最简单实例。但是,将复杂的结构放在它们上,考虑到相应的全态物体是一个新想法。第一个项目致力于研究二维情况下非交易性托里概括已知结果的全体形态束类别的研究。第二个项目涉及在Bridgeland发现的代数品种上的相干滑轮类别的新结构(由物理学的某些想法激励)。就是说,攻击此类派生类别上与稳定性条件有关的许多问题的攻击目的是,该提案中有更多项目与对雅各比式品种的重言式循环的研究以及代数几何形状引起的一个内代代数有关。在拟议的几何学中,提出的研究是在非标准的几何学和Alge egeementer ancortratival Isement ancommential Geementry a的领域中。最初由Connes开发的领域,结合了来自非共同代数,差异几何形状和功能分析的思想。 代数几何形状是数学的经典分支,研究了由多项式方程和相关数学概念定义的几何对象。两种现场的最新进展都取决于它们在物理学中的使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Polishchuk其他文献

De Rham cohomology for supervarieties
超簇的 De Rham 上同调
  • DOI:
    10.1007/s40879-024-00736-2
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk
$${\mathbb A}^{0|1}$$ A 0 | 1
$${mathbb A}^{0|1}$$ A 0 |
Schwartz $\kappa$-densities for the moduli stack of rank $2$ bundles on a curve over a local field
局部场曲线上的阶 $2$ 束的模堆栈的 Schwartz $kappa$-密度
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Braverman;D. Kazhdan;Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk

Alexander Polishchuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Polishchuk', 18)}}的其他基金

Analytic Langlands Correspondence
分析朗兰兹通讯
  • 批准号:
    2349388
  • 财政年份:
    2024
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Continuing Grant
Derived Categories, Noncommutative Orders, and Other Topics
派生范畴、非交换顺序和其他主题
  • 批准号:
    2001224
  • 财政年份:
    2020
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Standard Grant
Moduli of A-Infinity Structures and Related Topics
A-无穷大结构的模及相关主题
  • 批准号:
    1700642
  • 财政年份:
    2017
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Standard Grant
A-infinity structures and derived categories in algebraic geometry
代数几何中的 A-无穷大结构和派生范畴
  • 批准号:
    1400390
  • 财政年份:
    2014
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Standard Grant
Derived categories techniques in algebraic geometry
代数几何中的派生范畴技术
  • 批准号:
    1001364
  • 财政年份:
    2010
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Standard Grant
Topics in Algebraic Geometry, Non-commutative Geometry and Representation Theory
代数几何、非交换几何和表示论专题
  • 批准号:
    0527042
  • 财政年份:
    2004
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Standard Grant
Topics in Algebraic Geometry, Non-commutative Geometry and Representation Theory
代数几何、非交换几何和表示论专题
  • 批准号:
    0302215
  • 财政年份:
    2003
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Standard Grant
Homological Mirror Symmetry and Functional Equations
同调镜像对称和函数方程
  • 批准号:
    0070967
  • 财政年份:
    2000
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Sheaves on Witt Schemes and Trace Formula with Application to Representation Theory
数学科学:维特方案和迹公式及其在表示论中的应用
  • 批准号:
    9700458
  • 财政年份:
    1997
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Standard Grant

相似国自然基金

奇异黎曼叶状结构的微分几何学研究
  • 批准号:
    12371048
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
  • 批准号:
    42102149
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
非欧几何学的若干历史问题研究
  • 批准号:
    12161086
  • 批准年份:
    2021
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于代数几何学的统计学习理论研究
  • 批准号:
    12171382
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Generalized complex structures, 4 dimensional differential topology, noncommutative algebraic geometry and derived category
广义复结构、4维微分拓扑、非交换代数几何和派生范畴
  • 批准号:
    16K13755
  • 财政年份:
    2016
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Studies on noncommutative algebraic geometry and generalized complex geometry
非交换代数几何与广义复几何研究
  • 批准号:
    16K13746
  • 财政年份:
    2016
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Hopf cyclic cohomology, twisted local index formula, and noncommutative complex geometry
Hopf 循环上同调、扭曲局部指数公式和非交换复几何
  • 批准号:
    184060-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf cyclic cohomology, twisted local index formula, and noncommutative complex geometry
Hopf 循环上同调、扭曲局部指数公式和非交换复几何
  • 批准号:
    184060-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf cyclic cohomology, twisted local index formula, and noncommutative complex geometry
Hopf 循环上同调、扭曲局部指数公式和非交换复几何
  • 批准号:
    184060-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了