Moduli of A-Infinity Structures and Related Topics

A-无穷大结构的模及相关主题

基本信息

  • 批准号:
    1700642
  • 负责人:
  • 金额:
    $ 17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

The project is in the field of algebraic geometry with some connections to string theory. Algebraic geometry is a branch of mathematics studying geometric objects defined by polynomial equations and related mathematical structures. Classically one associates with such geometric objects (called algebraic varieties) the set of algebraic functions on them which forms a commutative ring (i.e., functions can be added and multiplied). The PI studies much more sophisticated algebraic structures associated with algebraic varieties, such as A-infinity algebras and derived categories of sheaves. In an A-infinity algebra, in addition to taking product of two elements, one has higher operations of multiplying together n-tuples of elements. These structures appeared independently in a very different way in works of Fukaya. The research is partly motivated by the desire to match different constructions of A-infinity algebras. The PI also intends to apply A-infinity structures to solve some problems in algebraic geometry.The project will focus mostly on the following two topics: moduli spaces of A-infinity structures and moduli spaces related to algebraic curves. In the first part of the project the goal is to construct moduli spaces (i.e., parameter spaces) of A-infinity structures related to various moduli spaces of geometric objects (sometimes involving non-commutative geometry). In particular, the PI plans to construct moduli spaces of A-infinity algebras related to algebraic surfaces, double covers of non-commutative projective lines, noncommutative orders over curves, as well as moduli spaces of A-infinity modules related to birational transformations. The second part of the project is devoted to studying toric GIT picture for moduli spaces of curves with nonspecial divisors, as well as moduli spaces of curves with vector bundles on them and their non-commutative analogs. Also, the PI plans to study natural vector fields on the moduli spaces of curves with nonspecial divisors and use them to produce explicit rational functions on the moduli spaces of curves with no marked points.
该项目属于代数几何领域,与弦理论有一些联系。代数几何是研究由多项式方程和相关数学结构定义的几何对象的数学分支。传统上,人们将这些几何对象(称为代数簇)与它们上的代数函数集联系起来,这些函数形成交换环(即函数可以相加和相乘)。 PI 研究与代数簇相关的更复杂的代数结构,例如 A-无穷代数和滑轮的派生类别。在 A 无穷代数中,除了两个元素的乘积之外,还有将 n 元组元素相乘的高级运算。这些结构在深谷的作品中以一种截然不同的方式独立出现。这项研究的部分动机是希望匹配 A-无穷代数的不同构造。 PI还打算应用A-无穷大结构来解决代数几何中的一些问题。该项目将主要关注以下两个主题:A-无穷大结构的模空间和与代数曲线相关的模空间。在该项目的第一部分中,目标是构造与几何对象的各种模空间(有时涉及非交换几何)相关的 A-无穷大结构的模空间(即参数空间)。特别是,PI计划构造与代数曲面相关的A-无穷代数的模空间、非交换射影线的双重覆盖、曲线上的非交换阶,以及与双有理变换相关的A-无穷模的模空间。该项目的第二部分致力于研究具有非特殊除数的曲线模空间的环面 GIT 图,以及具有向量束的曲线模空间及其非交换类似物。此外,PI 计划研究具有非特殊约数的曲线模空间上的自然向量场,并使用它们在没有标记点的曲线模空间上生成显式有理函数。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fundamental Matrix Factorization in the FJRW-Theory Revisited
  • DOI:
    10.1007/s40598-019-00100-3
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Polishchuk
  • 通讯作者:
    A. Polishchuk
Derived equivalences of gentle algebras via Fukaya categories
  • DOI:
    10.1007/s00208-019-01894-5
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Yankı Lekili;A. Polishchuk
  • 通讯作者:
    Yankı Lekili;A. Polishchuk
Homological mirror symmetry for higher-dimensional pairs of pants
高维裤子的同调镜像对称
  • DOI:
    10.1112/s0010437x20007150
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Lekili, Yankı;Polishchuk, Alexander
  • 通讯作者:
    Polishchuk, Alexander
Associative Yang–Baxter equation and Fukaya categories of square-tiled surfaces
  • DOI:
    10.1016/j.aim.2018.11.018
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Yankı Lekili;A. Polishchuk
  • 通讯作者:
    Yankı Lekili;A. Polishchuk
NC-smooth algebroid thickenings for families of vector bundles and quiver representations
向量丛族和箭袋表示的 NC 平滑代数体增厚
  • DOI:
    10.1112/s0010437x19007115
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Dyer, Ben;Polishchuk, Alexander
  • 通讯作者:
    Polishchuk, Alexander
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Polishchuk其他文献

De Rham cohomology for supervarieties
超簇的 De Rham 上同调
  • DOI:
    10.1007/s40879-024-00736-2
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk
$${\mathbb A}^{0|1}$$ A 0 | 1
$${mathbb A}^{0|1}$$ A 0 |
Schwartz $\kappa$-densities for the moduli stack of rank $2$ bundles on a curve over a local field
局部场曲线上的阶 $2$ 束的模堆栈的 Schwartz $kappa$-密度
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Braverman;D. Kazhdan;Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk

Alexander Polishchuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Polishchuk', 18)}}的其他基金

Analytic Langlands Correspondence
分析朗兰兹通讯
  • 批准号:
    2349388
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Derived Categories, Noncommutative Orders, and Other Topics
派生范畴、非交换顺序和其他主题
  • 批准号:
    2001224
  • 财政年份:
    2020
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
A-infinity structures and derived categories in algebraic geometry
代数几何中的 A-无穷大结构和派生范畴
  • 批准号:
    1400390
  • 财政年份:
    2014
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Derived categories techniques in algebraic geometry
代数几何中的派生范畴技术
  • 批准号:
    1001364
  • 财政年份:
    2010
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Complex geometry of noncommutative tori and t-structures on derived categories
派生范畴上非交换环面和 t 结构的复杂几何
  • 批准号:
    0601034
  • 财政年份:
    2006
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Topics in Algebraic Geometry, Non-commutative Geometry and Representation Theory
代数几何、非交换几何和表示论专题
  • 批准号:
    0527042
  • 财政年份:
    2004
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Topics in Algebraic Geometry, Non-commutative Geometry and Representation Theory
代数几何、非交换几何和表示论专题
  • 批准号:
    0302215
  • 财政年份:
    2003
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Homological Mirror Symmetry and Functional Equations
同调镜像对称和函数方程
  • 批准号:
    0070967
  • 财政年份:
    2000
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Sheaves on Witt Schemes and Trace Formula with Application to Representation Theory
数学科学:维特方案和迹公式及其在表示论中的应用
  • 批准号:
    9700458
  • 财政年份:
    1997
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant

相似国自然基金

无限层结构镍氧化物超导薄膜的界面、掺杂调控和电子结构研究
  • 批准号:
    12274061
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
与Virasoro代数相关的一些无限维阶化李代数的结构和表示
  • 批准号:
    12261077
  • 批准年份:
    2022
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
机械结构系统中无限维非线性全局动力学理论研究
  • 批准号:
    11902220
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
数据驱动的非贝叶斯认知网络动力学演化的若干问题研究
  • 批准号:
    11901108
  • 批准年份:
    2019
  • 资助金额:
    28.9 万元
  • 项目类别:
    青年科学基金项目
算子代数中齐性空间的微分几何结构
  • 批准号:
    11901453
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study on Fiberwise A-infinity Structures
纤维A-无穷大结构研究
  • 批准号:
    19K14535
  • 财政年份:
    2019
  • 资助金额:
    $ 17万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A-infinity structures and derived categories in algebraic geometry
代数几何中的 A-无穷大结构和派生范畴
  • 批准号:
    1400390
  • 财政年份:
    2014
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Generalized A-infinity algebras, stability structures, and Hochschild homology
广义 A-无穷代数、稳定性结构和 Hochschild 同调
  • 批准号:
    0901224
  • 财政年份:
    2009
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Studies on Floer thoery, theory of holomorphic curves and symplectic structures, contact structures
弗洛尔理论、全纯曲线理论和辛结构、接触结构研究
  • 批准号:
    21244002
  • 财政年份:
    2009
  • 资助金额:
    $ 17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Damage Localization and State Space Identification Based on Noisy Observations, H-infinity Estimation Theory and Subspace Methods during Lifetime of Non-Stationary, Mechanical Structures using Ambient Excitation
使用环境激励的非静止机械结构寿命期间基于噪声观测、H 无穷大估计理论和子空间方法的损伤定位和状态空间识别
  • 批准号:
    350257805
  • 财政年份:
  • 资助金额:
    $ 17万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了