A-infinity structures and derived categories in algebraic geometry
代数几何中的 A-无穷大结构和派生范畴
基本信息
- 批准号:1400390
- 负责人:
- 金额:$ 15.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is in the field of algebraic geometry with some connections to string theory and noncommutative geometry. Algebraic geometry is a branch of mathematics studying geometric objects defined by polynomial equations and related mathematical structures. In classical algebraic geometry one associates with such geometric objects (called algebraic varieties) a space of functions that is a commutative ring. In this research project, more sophisticated algebraic structures associated with algebraic varieties, such as A-infinity algebras and derived categories of sheaves, will be studied.The research project will focus on the following topics:1) A-infinity structures associated with curves and their relation to the moduli spaces of curves,2) Semiorthogonal decomposition of the derived categories of equivariant sheaves for finite group actions,3) Cohomological field theories associated with quasihomogeneous polynomials,4) Sheaves on NC-thickenings and a characterization of Jacobians.The first project is about some A-infinity algebras associated with curves with marked points. The research will study normal forms of these A-infinity algebras up to homotopy and to relate them to the moduli spaces of curves. In the second project a construction of a canonical semiorthogonal decomposition of the derived category of equivariant coherent sheaves for some actions of finite reflection groups is outlined and will be studied. The third project is concerned with applications of categories of matrix factorizations with computation in the cohomological field theories attached to quasihomogeneous polynomials with isolated singularities. The fourth project focuses on which coherent sheaves on an abelian variety can be extended to a noncommutative thickening, which is a quantization of the Poisson envelope of the sheaf of regular functions. This may lead to a new characterization of Jacobians of curves.
该研究项目位于代数几何学领域,与弦理论和非交通性几何形状有一些联系。代数几何形状是研究由多项式方程和相关数学结构定义的数学对象的数学分支。在经典的代数几何形状中,一个人与这种几何对象(称为代数品种)相关联,一个函数空间是一个通勤环。 In this research project, more sophisticated algebraic structures associated with algebraic varieties, such as A-infinity algebras and derived categories of sheaves, will be studied.The research project will focus on the following topics:1) A-infinity structures associated with curves and their relation to the moduli spaces of curves,2) Semiorthogonal decomposition of the derived categories of equivariant sheaves for finite小组动作,3)与准多项式相关的共同体学领域理论,4)在NC厚的Hic弹上和Jacobian的表征上的滑轮。第一个项目大约是一些与曲线相关的A-Anfinity代数。该研究将研究这些a-内代数的正常形式,直到同义,并将它们与曲线的模量空间联系起来。在第二个项目中,概述了并将研究对有限反射组的某些作用的衍生类似类别类别的规范半双相分解的结构。第三个项目涉及矩阵因素化类别的应用,并在与孤立的奇异性的准多项式相关的共同体学领域理论中进行了计算。第四个项目的重点是在阿伯利亚品种上连贯的束带可以扩展到非交通增厚,这是对常规功能的托盘的泊松信封的量化。这可能会导致雅各布人的新特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Alexander Polishchuk其他文献
De Rham cohomology for supervarieties
超簇的 De Rham 上同调
- DOI:10.1007/s40879-024-00736-210.1007/s40879-024-00736-2
- 发表时间:20242024
- 期刊:
- 影响因子:0.6
- 作者:Alexander PolishchukAlexander Polishchuk
- 通讯作者:Alexander PolishchukAlexander Polishchuk
$${\mathbb A}^{0|1}$$
A
0
|
1
$${mathbb A}^{0|1}$$ A 0 |
- DOI:10.1007/s00220-023-04769-810.1007/s00220-023-04769-8
- 发表时间:20232023
- 期刊:
- 影响因子:2.4
- 作者:Alexander PolishchukAlexander Polishchuk
- 通讯作者:Alexander PolishchukAlexander Polishchuk
Schwartz $\kappa$-densities for the moduli stack of rank $2$ bundles on a curve over a local field
局部场曲线上的阶 $2$ 束的模堆栈的 Schwartz $kappa$-密度
- DOI:
- 发表时间:20242024
- 期刊:
- 影响因子:0
- 作者:A. Braverman;D. Kazhdan;Alexander PolishchukA. Braverman;D. Kazhdan;Alexander Polishchuk
- 通讯作者:Alexander PolishchukAlexander Polishchuk
共 3 条
- 1
Alexander Polishch...的其他基金
Analytic Langlands Correspondence
分析朗兰兹通讯
- 批准号:23493882349388
- 财政年份:2024
- 资助金额:$ 15.5万$ 15.5万
- 项目类别:Continuing GrantContinuing Grant
Derived Categories, Noncommutative Orders, and Other Topics
派生范畴、非交换顺序和其他主题
- 批准号:20012242001224
- 财政年份:2020
- 资助金额:$ 15.5万$ 15.5万
- 项目类别:Standard GrantStandard Grant
Moduli of A-Infinity Structures and Related Topics
A-无穷大结构的模及相关主题
- 批准号:17006421700642
- 财政年份:2017
- 资助金额:$ 15.5万$ 15.5万
- 项目类别:Standard GrantStandard Grant
Derived categories techniques in algebraic geometry
代数几何中的派生范畴技术
- 批准号:10013641001364
- 财政年份:2010
- 资助金额:$ 15.5万$ 15.5万
- 项目类别:Standard GrantStandard Grant
Complex geometry of noncommutative tori and t-structures on derived categories
派生范畴上非交换环面和 t 结构的复杂几何
- 批准号:06010340601034
- 财政年份:2006
- 资助金额:$ 15.5万$ 15.5万
- 项目类别:Continuing GrantContinuing Grant
Topics in Algebraic Geometry, Non-commutative Geometry and Representation Theory
代数几何、非交换几何和表示论专题
- 批准号:05270420527042
- 财政年份:2004
- 资助金额:$ 15.5万$ 15.5万
- 项目类别:Standard GrantStandard Grant
Topics in Algebraic Geometry, Non-commutative Geometry and Representation Theory
代数几何、非交换几何和表示论专题
- 批准号:03022150302215
- 财政年份:2003
- 资助金额:$ 15.5万$ 15.5万
- 项目类别:Standard GrantStandard Grant
Homological Mirror Symmetry and Functional Equations
同调镜像对称和函数方程
- 批准号:00709670070967
- 财政年份:2000
- 资助金额:$ 15.5万$ 15.5万
- 项目类别:Continuing GrantContinuing Grant
Mathematical Sciences: Sheaves on Witt Schemes and Trace Formula with Application to Representation Theory
数学科学:维特方案和迹公式及其在表示论中的应用
- 批准号:97004589700458
- 财政年份:1997
- 资助金额:$ 15.5万$ 15.5万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
木质素分子结构调控碳材料可控构筑及其催化生物质含氧衍生物氨氧化性能的研究
- 批准号:22372043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
纤维素衍生限域结构碳基催化剂的可控构筑及对木质素氧化解聚机制
- 批准号:32301541
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
煤沥青衍生碳材料的结构调控及应用于负极界面优化型锌离子混合电容器的研究
- 批准号:22369019
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
抗肿瘤药物淫羊藿素的化学—酶法合成及结构衍生化
- 批准号:82304667
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
氢键框架模板策略调控MOF衍生Ru-NiSex异质结构的制备及其电解水研究
- 批准号:22305207
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:1070783010707830
- 财政年份:2023
- 资助金额:$ 15.5万$ 15.5万
- 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:1058659610586596
- 财政年份:2023
- 资助金额:$ 15.5万$ 15.5万
- 项目类别:
Brain derived extracellular vesicles-mediated neurotoxicity of deltamethrin
溴氰菊酯脑源性细胞外囊泡介导的神经毒性
- 批准号:1067985810679858
- 财政年份:2023
- 资助金额:$ 15.5万$ 15.5万
- 项目类别:
High-throughput Phenotyping of iPSC-derived Airway Epithelium by Multiscale Machine Learning Microscopy
通过多尺度机器学习显微镜对 iPSC 衍生的气道上皮进行高通量表型分析
- 批准号:1065939710659397
- 财政年份:2023
- 资助金额:$ 15.5万$ 15.5万
- 项目类别:
Creation of Wood-derived Porous Materials with Tailorable Flow Channels and Their Applications for Solar Vapor Generator
具有可定制流道的木质多孔材料的制备及其在太阳能蒸汽发生器中的应用
- 批准号:22KJ208822KJ2088
- 财政年份:2023
- 资助金额:$ 15.5万$ 15.5万
- 项目类别:Grant-in-Aid for JSPS FellowsGrant-in-Aid for JSPS Fellows