Multiscale Analysis of Infinite-Dimensional Stochastic Systems
无限维随机系统的多尺度分析
基本信息
- 批准号:1954299
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When analyzing complex systems, it is important to be able to have a simplified description of them. Oftentimes, such a simplification is realized by considering a smaller number of factors that are considered more relevant to the understanding of these systems and by neglecting all those factors that are considered less relevant. However, some factors that may appear less important at a certain time scale, turn out to play a crucial role at some longer time scale. Thus, it is fundamental to understand correctly the interplay among multiple scales of complex systems in order to have more effective models. This project will introduce and develop new methods of asymptotic analysis for stochastic partial differential equations. These are highly complex objects and any effort that goes in the direction of their simplified and more effective analysis is important, both for their deeper understanding and for the wide range of their possible applications. This analysis requires the development of new methods and the substantial introduction of new techniques which have to range over many fields in mathematics, from analysis in infinite-dimensional spaces to stochastic analysis and the theory of partial differential equations. The project provides research training opportunities for graduate students. The main goal of this research project is the study of several asymptotic problems for systems that are described by stochastic partial differential equations having multiple scales. Small stochastic and deterministic perturbations of a system, which have a negligible effect on a given time scale can become crucial on a longer time scale. Limit theorems in the framework of the theory of large deviation and metastability, various realizations of the averaging principle, small mass limits as in the Smoluchowski-Kramers approximation will be the objects of the research. What characterizes and unifies the present approach to all these asymptotic problems is the effort to understand how they all interplay and interact with each other.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在分析复杂系统时,重要的是要对其进行简化的描述。通常,通过考虑较小的因素被认为与对这些系统的理解更相关,并忽略所有被认为不相关的因素来实现这种简化。但是,某些因素可能在特定时间范围内看起来不太重要的因素,在更长的时间范围内起着至关重要的作用。因此,正确理解复杂系统的多个尺度之间的相互作用是至关重要的,以便具有更有效的模型。该项目将为随机部分微分方程介绍并开发新的渐近分析方法。这些都是高度复杂的对象,并且朝着简化和更有效的分析方向进行的任何努力对于他们的深入理解和广泛的应用程序范围都很重要。该分析需要开发新方法,并大量引入新技术,这些新技术必须在数学领域的许多领域中进行范围,从无限维空间的分析到随机分析到随机分析以及部分微分方程的理论。该项目为研究生提供了研究培训机会。该研究项目的主要目标是研究系统的几个渐近问题,这些问题由具有多个量表的随机部分微分方程描述。系统对给定时间尺度具有可忽略的影响的系统的小型随机性和确定性扰动可能在更长的时间范围内变得至关重要。 限制了大偏差和标准化理论框架中的定理,平均原理的各种实现,小质量限制(如Smoluchowski-kramers近似值)将是研究的对象。特征和统一所有这些渐近问题的方法的特征和统一的是,努力了解它们如何相互作用和相互作用。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子的优点和更广泛的影响来审查标准,认为NSF的法定任务值得通过评估来获得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large deviations principle for the invariant measures of the 2D stochastic Navier–Stokes equations with vanishing noise correlation
- DOI:10.1007/s40072-021-00219-5
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:S. Cerrai;N. Paskal
- 通讯作者:S. Cerrai;N. Paskal
Incompressible viscous fluids in R2 and SPDEs on graphs, in presence of fast advection and non smooth noise
图表中 R2 和 SPDE 中的不可压缩粘性流体,存在快速平流和非平滑噪声
- DOI:10.1214/20-aihp1118
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Cerrai, Sandra;Xi, Guangyu
- 通讯作者:Xi, Guangyu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandra Cerrai其他文献
Schauder estimates for a degenerate second order elliptic operator on a cube
- DOI:
10.1016/j.jde.2007.08.002 - 发表时间:
2007-11-15 - 期刊:
- 影响因子:
- 作者:
Sandra Cerrai;Philippe Clément - 通讯作者:
Philippe Clément
Asymptotic behaviour of solutions
- DOI:
10.1007/3-540-45147-1_3 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Sandra Cerrai - 通讯作者:
Sandra Cerrai
Sandra Cerrai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandra Cerrai', 18)}}的其他基金
Analysis of stochastic partial differential equations with multiple scales
多尺度随机偏微分方程分析
- 批准号:
1712934 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Asymptotic problems for stochastic partial differential equations
随机偏微分方程的渐近问题
- 批准号:
1407615 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Asymptotic problems for stochastic partial differential equations
随机偏微分方程的渐近问题
- 批准号:
0907295 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
具切换控制的耦合无限维系统的能稳性分析
- 批准号:12271035
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
Banach空间中时变随机广义发展方程的精确能控性问题研究
- 批准号:12126401
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
高维及无限维区域上函数空间的算子论及相关调和分析
- 批准号:
- 批准年份:2020
- 资助金额:51 万元
- 项目类别:面上项目
面向数据流的无限论域动态粒的不确定性分析与知识发现研究
- 批准号:61806001
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
带变动指标集的半无限优化的一些新问题研究
- 批准号:11701478
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Design and Sensitivity Analysis of Infinite-Dimensional Bayesian Inverse Problems
无限维贝叶斯反问题的设计与敏感性分析
- 批准号:
2111044 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Development, evolution, and new development of stochastic analysis of infinite particle systems
无限粒子系统随机分析的发展、演变和新发展
- 批准号:
21H04432 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Stochastic Analysis on Infinite Dimensional Spaces from a Geometric View
从几何角度看无限维空间的随机分析
- 批准号:
20K03639 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Higher-order asymptotic analysis of nonconformal iterative function systems with infinite graphs by asymptotic theory construction of transfer operators
基于传递算子渐近理论构造的无限图非共形迭代函数系统的高阶渐近分析
- 批准号:
20K03636 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning and statistical methhods on infinite-dimensional manifolds
无限维流形上的机器学习和统计方法
- 批准号:
20H04250 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)