Effect of Extreme Nanoconfinement on the Thermodynamics and Transport Phenomena in Multiphasic Nanocomposite Coatings
极端纳米约束对多相纳米复合涂层热力学和传输现象的影响
基本信息
- 批准号:1933704
- 负责人:
- 金额:$ 39.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-11-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Due to their flexibility, low density and recyclability, polymer films and coatings are playing an increasingly important role in the regulation of gas transport in a wide range of applications such as gas barriers for food, beverage, microelectronics and medical device packaging. Adding nanoparticles and/or blending multiple polymers together have proven to be effective methods to tune gas transport properties of nanocomposite films. Adding high concentrations of nanoparticles, in particular, is a powerful approach for producing high performance gas barriers and gas separation membranes. In this work the investigators will produce polymer films with high nanoparticle loadings via solvent-driven infiltration of polymers (SIP) into layers of nanoparticles. In this process, layers of nanoparticles, sitting on top of a polymer layer, are filled with a solvent. Some of this solvent moves into the polymer layer and softens or plasticizes, the polymer material. Once the polymer is plasticized, it can move into the nanoparticle layer, filling in the gaps between nanoparticles, by attractive interactions with either the solvent or the nanoparticles. The investigators will study which of these interactions are most important for polymer infiltration and how to tune these interactions to obtain polymer films with high loadings of nanoparticles. These hard, solid nanoparticles maintain barriers which limit polymer's ability to expand. These constrained polymers are expected to exhibit improved gas barrier properties, making them attractive for various packaging applications.The investigators hypothesize the dynamics and thermodynamics of polymer chains in the interstices of nanoparticle packings under extreme nanoconfinement will be dominated by the thermodynamics of the interfaces. Solvent-infiltration of polymers (SIP) provides an ideal platform to characterize the dynamics and thermodynamics of confined polymers and transport of gas molecules through a binary polymer phase under extreme nanoconfinement. This work will lead to fundamental understandings of how polymer-solvent-nanoparticle interactions affect the infiltration mechanism and dynamics, as well as the thermodynamics of polymers under extreme nanoconfinement. The dynamics and resulting structure of SIP will be studied using in situ spectroscopic ellipsometry as well as molecular dynamics (MD) simulations. Efficient field-theoretic simulations, including self-consistent field theory, will be used to understand the thermodynamics in the packings and guide both the experiments and MD simulations. The structure-transport property relationship of SIP nanocomposites for different polymer molecular weight and polymer-nanoparticle interactions will be established by characterizing the structure using transmission electron microscopy, MD, and by testing the transport properties through quartz crystal microbalance with dissipation. Because theoretical frameworks to predict the dynamics and thermodynamics of SIP are not currently available, whenever possible, computation-based approaches will provide important guidelines for experimental conditions. The investigators will support involvement from underrepresented minority students by leading cooperative efforts with University of Puerto Rico-Humacao, Advancing Women in Engineering and Louise-Stoke Alliance for Minority Participation and Rachleff Scholars Program. The PIs also plan to develop educational programs and exhibits that showcase the nanocomposites with ultra-high loadings of natural nanomaterials with the help of undergraduate/graduate students for use during outreach activities organized through local high schools and science cafe events.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于其灵活性、低密度和可回收性,聚合物薄膜和涂料在食品、饮料、微电子和医疗器械包装的气体阻隔等广泛应用中的气体传输调节中发挥着越来越重要的作用。添加纳米颗粒和/或将多种聚合物共混在一起已被证明是调整纳米复合材料薄膜气体传输性能的有效方法。特别是,添加高浓度的纳米粒子是生产高性能气体屏障和气体分离膜的有效方法。在这项工作中,研究人员将通过溶剂驱动的聚合物渗透(SIP)到纳米颗粒层中来生产具有高纳米颗粒负载的聚合物薄膜。在此过程中,位于聚合物层顶部的纳米颗粒层充满溶剂。一些溶剂进入聚合物层并软化或塑化聚合物材料。一旦聚合物塑化,它就可以通过与溶剂或纳米颗粒的吸引相互作用进入纳米颗粒层,填充纳米颗粒之间的间隙。研究人员将研究哪些相互作用对于聚合物渗透最重要,以及如何调整这些相互作用以获得具有高纳米粒子负载的聚合物薄膜。这些坚硬的固体纳米粒子保持着限制聚合物膨胀能力的屏障。这些约束聚合物预计将表现出改进的气体阻隔性能,使其对各种包装应用具有吸引力。研究人员假设,在极端纳米约束下,纳米颗粒填料间隙中的聚合物链的动力学和热力学将由界面的热力学主导。聚合物溶剂渗透 (SIP) 提供了一个理想的平台来表征受限聚合物的动力学和热力学以及气体分子在极端纳米约束下通过二元聚合物相的传输。这项工作将带来对聚合物-溶剂-纳米粒子相互作用如何影响渗透机制和动力学以及极端纳米限制下聚合物热力学的基本理解。 SIP 的动力学和由此产生的结构将使用原位光谱椭圆光度法以及分子动力学 (MD) 模拟进行研究。有效的场论模拟,包括自洽场论,将用于了解填料中的热力学并指导实验和分子动力学模拟。通过使用透射电子显微镜、MD 表征结构,并通过石英晶体微天平和耗散测试传输特性,将建立不同聚合物分子量和聚合物-纳米颗粒相互作用的 SIP 纳米复合材料的结构-传输特性关系。由于目前尚无预测 SIP 动力学和热力学的理论框架,因此只要有可能,基于计算的方法将为实验条件提供重要指导。调查人员将通过与波多黎各大学乌马考分校、推进工程领域女性协会、路易斯-斯托克少数族裔参与联盟和拉奇莱夫学者计划的合作,支持代表性不足的少数族裔学生的参与。 PI 还计划开发教育项目和展览,在本科生/研究生的帮助下展示具有超高天然纳米材料负载的纳米复合材料,以便在当地高中和科学咖啡馆活动组织的外展活动中使用。该奖项反映了 NSF 的法定奖项使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dual Porosity-Enhanced Antireflection Coatings with Continuous Gradient
具有连续梯度的双孔隙率增强减反射涂层
- DOI:10.1021/acsami.3c07254
- 发表时间:2023-08
- 期刊:
- 影响因子:9.5
- 作者:Hwang, Uiseok;Nam, Jae;Lee, Daeyeon
- 通讯作者:Lee, Daeyeon
Polymer-Infiltrated Nanoparticle Films Using Capillarity-Based Techniques: Toward Multifunctional Coatings and Membranes
使用基于毛细作用的技术的聚合物渗透纳米颗粒薄膜:迈向多功能涂层和膜
- DOI:10.1146/annurev-chembioeng-101220-093836
- 发表时间:2021-06
- 期刊:
- 影响因子:8.4
- 作者:Venkatesh, R. Bharath;Manohar, Neha;Qiang, Yiwei;Wang, Haonan;Tran, Hong Huy;Kim, Baekmin Q.;Neuman, Anastasia;Ren, Tian;Fakhraai, Zahra;Riggleman, Robert A.;et al
- 通讯作者:et al
Increases in Miscibility of a Binary Polymer Blend Confined within a Nanoparticle Packing
限制在纳米颗粒填料内的二元聚合物共混物的混溶性增加
- DOI:10.1021/acs.macromol.2c01918
- 发表时间:2023-01-18
- 期刊:
- 影响因子:5.5
- 作者:Anastasia Neuman;Shan Zhang;Daeyeon Lee;Robert A. Riggleman
- 通讯作者:Robert A. Riggleman
Effect of polymer–nanoparticle interactions on solvent-driven infiltration of polymer (SIP) into nanoparticle packings: a molecular dynamics study
聚合物与纳米颗粒相互作用对聚合物 (SIP) 溶剂驱动渗透到纳米颗粒填料中的影响:分子动力学研究
- DOI:10.1039/c9me00148d
- 发表时间:2020-03-30
- 期刊:
- 影响因子:0
- 作者:R. Venkatesh;Tianren Zhang;N. Manohar;K. Stebe;Robert A. Riggleman;Daeyeon Lee
- 通讯作者:Daeyeon Lee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daeyeon Lee其他文献
Increase in the effective viscosity of polyethylene under extreme nanoconfinement.
在极端纳米约束下聚乙烯的有效粘度增加。
- DOI:
10.1063/5.0185144 - 发表时间:
2024-01-12 - 期刊:
- 影响因子:0
- 作者:
Tian Ren;Zachary R Hinton;Renjing Huang;Thomas H. Epps;L. Korley;R. Gorte;Daeyeon Lee - 通讯作者:
Daeyeon Lee
Synthesis and mechanical response of disordered colloidal micropillars.
无序胶体微柱的合成和机械响应。
- DOI:
10.1039/c3cp55422h - 发表时间:
2014-05-15 - 期刊:
- 影响因子:0
- 作者:
D. Strickland;Lei Zhang;Yun;D. Magagnosc;Daeyeon Lee;D. Gianola - 通讯作者:
D. Gianola
Moldable Perfluoropolyether–Polyethylene Glycol Networks with Tunable Wettability and Solvent Resistance for Rapid Prototyping of Droplet Microfluidics
具有可调润湿性和耐溶剂性的可模压全氟聚醚-聚乙二醇网络,用于液滴微流体的快速原型制作
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Heon;Syung Hun Han;S. Yadavali;Junhyong Kim;D. Issadore;Daeyeon Lee - 通讯作者:
Daeyeon Lee
Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model
基于重力的成骨因子模式以在大型动物模型骨软骨损伤后保留骨结构
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:9
- 作者:
H. Zlotnick;R. Locke;S. Hemdev;B. Stoeckl;Sachin Gupta;A. Peredo;D. Steinberg;J. Carey;Daeyeon Lee;G. R. Dodge;R. Mauck - 通讯作者:
R. Mauck
Ultrahigh Throughput On‐Chip Synthesis of Microgels with Tunable Mechanical Properties
具有可调机械性能的微凝胶的超高通量片上合成
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jingyu Wu;S. Yadavali;D. Issadore;Daeyeon Lee - 通讯作者:
Daeyeon Lee
Daeyeon Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daeyeon Lee', 18)}}的其他基金
Conference: 2024 Colloidal, Macromolecular and Polyelectrolyte Solutions Gordon Research Conference and Seminar
会议:2024胶体、高分子和聚电解质解决方案戈登研究会议及研讨会
- 批准号:
2331084 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
NSF-BSF: Interfacial freezing and shape transformations in surfactant/particle-co-stabilized emulsions
NSF-BSF:表面活性剂/颗粒共稳定乳液中的界面冻结和形状转变
- 批准号:
2110611 - 财政年份:2021
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
EFRI DCheM: Distributed Ribonucleic Acid (RNA) Manufacturing via Continuous Enzymatic Reaction and Separation in Biphasic Liquid Media
EFRI DCheM:通过双相液体介质中的连续酶促反应和分离进行分布式核糖核酸 (RNA) 制造
- 批准号:
2132141 - 财政年份:2021
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
Nanostructured Composite Coatings to Harden and Toughen Polymer Surfaces
用于硬化和增韧聚合物表面的纳米结构复合涂层
- 批准号:
1662695 - 财政年份:2017
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
Complexation of charged polymers and nanoparticles at all aqueous interfaces for functional membrane formation
带电聚合物和纳米颗粒在所有水界面处络合以形成功能性膜
- 批准号:
1705891 - 财政年份:2017
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
GOALI: Single droplet level understanding of phase inversion emulsification to enable continuous processing
GOALI:单液滴水平了解转相乳化以实现连续加工
- 批准号:
1604536 - 财政年份:2016
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
SNM: Scalable Manufacturing of Nanostructured Membranes for Fracking Wastewater Treatment
SNM:用于水力压裂废水处理的纳米结构膜的可规模化制造
- 批准号:
1449337 - 财政年份:2014
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
Collaborative Research: Optimal Design and Operation of Dye Sensitized Solar Cells Using an Integrated Strategy Involving First-Principles Modeling, Synthesis, and Characterization
合作研究:采用涉及第一性原理建模、合成和表征的综合策略优化染料敏化太阳能电池的设计和运行
- 批准号:
1234993 - 财政年份:2012
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
ACS Symposium on Emulsions, Bubbles and Foams: Fundamentals and Applications, New Orleans, Louisiana, April 7th - 11th, 2013
ACS 乳液、气泡和泡沫研讨会:基础知识和应用,路易斯安那州新奥尔良,2013 年 4 月 7 日至 11 日
- 批准号:
1219323 - 财政年份:2012
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
CAREER: Understanding Electrostatic Interactions in Non-Polar Media for Generation of Nanostructured Thin Films
职业:了解非极性介质中的静电相互作用以生成纳米结构薄膜
- 批准号:
1055594 - 财政年份:2011
- 资助金额:
$ 39.31万 - 项目类别:
Continuing Grant
相似国自然基金
极端光场条件下正电子束的产生、加速和操控研究
- 批准号:12375244
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
极端团队的工作特征与团队韧性研究:基于认知与情绪的双通路机制
- 批准号:72302214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
驾驶人极端情绪下风险映射解析的自适应主动干预研究
- 批准号:52302497
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海底观测极端环境供电系统继电保护与自愈方案研究
- 批准号:52377094
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
极端暴雨灾害下地铁线网系统韧性提升方法与策略研究
- 批准号:72304126
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331296 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
Collaborative Research: What Drives the Most Extreme Rainstorms in the Contiguous United States (US)?
合作研究:美国本土遭遇最极端暴雨的原因是什么?
- 批准号:
2337381 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Standard Grant
GLOBAL-EX: A GLOBAL theory for EXtreme land temperatures in a changing climate
GLOBAL-EX:气候变化中极端陆地温度的全球理论
- 批准号:
EP/Y027868/1 - 财政年份:2024
- 资助金额:
$ 39.31万 - 项目类别:
Research Grant